Math, asked by 1091182, 1 month ago

of polynomial please answer​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\:p(y) =  {y}^{4} +  {y}^{3} +  {8y}^{2} + my + n

and

\rm :\longmapsto\:q(y) =  {y}^{2} + 1

Let us now divide p(y) by q(y) using long division, we get

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\: \:  \:  \: {y}^{2} + y + 7 \:  \: \:}}}\\ {{\sf{ {y}^{2} + 1}}}& {\sf{\: {y}^{4} +  {y}^{3}  +  {8y}^{2}  + my  + n \:}} \\{\sf{}}&\underline{\sf{\: \:  \:  { - y}^{4} +  \:  \:  \:   \:  \:  \:   \: { - y}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:}}\\{\sf{}}&{\sf{\:  \:  \:  \:  \:  \:  \:  \:   \:  \: {y}^{3} +  {7y}^{2} + my + n \:\:}}\\{\sf{}}&\underline{\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:   -  {y}^{3} \:  \:  \:  \:  \:  \:  \:  \:  \:   - y \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:}}\\{\sf{}}&{\sf{\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {7y}^{2} + (m - 1)y   + n\:\:}}\\{\sf{}}&\underline{\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  { - 7y}^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: - 7 \:\:}}\\{\sf{}}&\underline{\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: (m - 1)y \: + (n - 7)  \:  \:  \:  \:  \:  \:  \: }}\end{array}\end{gathered}\end{gathered}\end{gathered}

Now, we have

\rm :\longmapsto\:Remainder = (m - 1)y + (n - 7)

Since, it is given that q(y) is a factor of p(y).

\bf\implies \:Remainder = 0

\rm :\longmapsto\:(m - 1)y + (n - 7) = 0

\rm :\longmapsto\:m - 1 = 0 \:  \:  \: and \: n - 7 = 0

\bf\implies \:m = 1 \:  \:  \: or \:  \:  \: n = 7

Additional Information :-

\rm :\longmapsto\: \alpha , \beta  \: are \: zeroes \: of \:  {ax}^{2} + bx + c, \: then

 \red{\boxed{ \rm \:  \alpha  +  \beta  =  -  \frac{b}{a}}}

and

 \red{\boxed{ \rm \:  \alpha\beta  = \frac{c}{a}}}

\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \:  {ax}^{3} + b {x}^{2}  + cx + d, \: then

 \red{\boxed{ \rm \:  \alpha  +  \beta +  \gamma   =  -  \frac{b}{a}}}

 \red{\boxed{ \rm \:  \alpha \beta   +  \beta \gamma  +  \gamma \alpha =  \frac{c}{a}}}

 \red{\boxed{ \rm \:  \alpha\beta \gamma   =  - \frac{d}{a}}}

Similar questions