Math, asked by guravanushka11, 5 months ago

of s1 s2 s3........sr are the sum of products of the roots taken r at a time then x^5-x^2+4x-9=0 then s3+s4-s5=​

Answers

Answered by fenilpatel3129
5

summatin of first 5 G.P series, S5=1023

and common ratio, r=4

summation of G.P terms having n number of terms =\frac{a\times(r^n -1)}{r-1}

r−1

a×(r

n

−1)

hence, summation of first five terms = \frac{a\times(r^5 -1)}{r-1}

r−1

a×(r

5

−1)

Answered by swethassynergy
1

The value of s3+s4-s5 =​ - 4.

Step-by-step explanation:

Given:

The equation x^{5} -x^{2} +4x-9=0

To Find:

The value of s3+s4-s5.

Formula Used:

The equation ax^{5} + bx^{4} + cx^{3} +dx^{2} + e x+f=0.    

 then,

 s1 =\frac{ cofficient\ of  x^{4}  }{ cofficient \ of \ x^{5} }  = - \frac{b}{a}

  s2 =\frac{ cofficient\ of  x^{3}  }{ cofficient \ of \ x^{5} }  = \frac{c}{a}

   s3 =\frac{ cofficient\ of  x^{2}  }{ cofficient \ of \ x^{5} }  = - \frac{d}{a}

  s4=\frac{ cofficient\ of  x^{}  }{ cofficient \ of \ x^{5} }  = \frac{e}{a}

   s5=\frac{ cofficient\ of  constant }{ cofficient \ of \ x^{5} }  =  - \frac{f}{a}

Solution:

As given- the equation  x^{5} -x^{2} +4x-9=0.

Comparing cofficients of equation x^{5} -x^{2} +4x-9=0 with equation ax^{5} + bx^{4} + cx^{3} +dx^{2} + e x+f=0 , we get.

a= 1,    b=0,     c=0,    d= -1 ,  e =4     and  f = -9

s3 =\frac{ cofficient\ of  x^{2}  }{ cofficient \ of \ x^{5} }  = - \frac{d}{a}

                               = - \frac{(-1)}{1} = 1

s4=\frac{ cofficient\ of  x^{}  }{ cofficient \ of \ x^{5} }  = \frac{e}{a}

                                 =\frac{4}{1}  =4

s5=\frac{ cofficient\ of  constant }{ cofficient \ of \ x^{5} }  =  - \frac{f}{a}

                                      = - \frac{(-9)}{1}  = 9

Therefore  s3+s4-s5 = 1+4-9 = - 4

                                 

Thus, the value of s3+s4-s5=​ - 4.

Correct Question

If s1 s2 s3........sr is the sum of products of the roots taken r at a time then x^5-x^2+4x-9=0 then s3+s4-s5=​.

Similar questions