of
sinA=sinx +siny
_________
1- Sinx.siny
then show that,
COS A = +,- of cosx. cosy/
___________
1+sinx.siny
Answers
Answered by
3
Given : sinA = (sinx + siny)/(1 + sinx siny)
To prove : cosA = ± cosx cosy/(1 + sinx siny)
proof : sinA = (sinx + siny)/(1 + sinx siny) .....(1)
we know, sin²A + cos²A = 1
so, cosA = ± √(1 - sin²A)
from equation (1) we get,
= ± √[1 - (sinx + siny)²/(1 + sinx siny)²]
= ± √[{(1 + sinx siny)² - (sinx + siny)²}/(1 + sinx siny)²]
= ± √[(1 + sin²x sin²y + 2sinx siny - sin²x - sin²y - 2sinx siny)/(1 + sinx siny)² ]
= ± √(sin²x sin²y - sin²x - sin²y + 1)/(1 + sinx siny)
= ± √{(-sin²x(1 - sin²y) + 1(1 - sin²y)}/(1 + sinx siny)
= ± √(1 - sin²x)(1 - sin²y)/(1 + sinx siny)
= ± √(cos²x cos²y)/(1 + sinx siny)
= ± cosx cosy/(1 + sinx siny)
Therefore cosA = ± cosx cosy/(1 + sinx siny)
Similar questions
Environmental Sciences,
4 months ago
India Languages,
4 months ago
Biology,
4 months ago
Biology,
9 months ago
Math,
1 year ago
Science,
1 year ago