Math, asked by motepallisrinivasara, 30 days ago

of tamo + seco
= 2/3
then tan O-seco:​

Answers

Answered by Anonymous
85

\maltese Given :-

tan\theta+sec\theta=\dfrac{2}{3}

\maltese To find :-

tan\theta - sec\theta

\maltese SOLUTION:-

As we the trigonometric identities that is ,

sec^2\theta- tan^2\theta = 1

As we the algebraic identities a²-b² = (a+b)(a-b) So,

(sec\theta+tan\theta) (sec\theta-tan\theta) = 1

\dfrac{2}{3} (sec\theta-tan\theta) = 1

sec\theta-tan\theta = \dfrac{1}{\dfrac{2}{3} }

sec\theta-tan\theta = \dfrac{3}{2}

Take common " - "

- ( -sec\theta +tan\theta) = \dfrac{3}{2}

tan\theta-sec\theta=\dfrac{-3}{2}

\malteseKnow more :-

Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

Trigonometric relations

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

Trigonometric ratios

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

Answered by KnightLyfe
61

Question:

If \mathsf{tan∅+sec∅=\frac{2}{3}} then, \mathsf{tan∅-sec∅=?}

Given:

\mathsf{tan∅+sec∅=\frac{2}{3}}

To Find:

\mathsf{tan∅-sec∅}

Solution:

We know,

\mathsf{sec²∅-tan²∅=1}

Then,

\mathsf{(sec∅+tan∅)(sec∅-tan∅)=1}

\mathsf{(\frac{2}{3})(sec∅-tan∅)=1}

\mathsf{(sec∅-tan∅)=\frac{1}{\frac{2}{3}}}

\mathsf{(sec∅-tan∅)=\frac{3}{2}}

OR,

\mathsf{-(-sec∅+tan∅)=\frac{-3}{2}}

\mathsf{tan∅-sec∅=\frac{-3}{2}}

More to know:

\mathsf{sin∅=\large\frac{opp}{hyp}}

\mathsf{cos∅=\large\frac{adj}{hyp}}

\mathsf{tan∅=\large\frac{opp}{adj}}

\mathsf{cot∅ =\large\frac{adj}{opp}}

\mathsf{cosec∅=\large\frac{hyp}{opp}}

\mathsf{sec∅=\large\frac{hyp}{adj}}

Abbreviation:

sin ≈ Sin

cos= Cosine

tan= Tangent

cot= Cotangent

cosec= Cosecant

sec= Secant

Similar questions