of x+1/x=
, find the value of ( x^4+1/x^4)
Answers
Answered by
0
Answer:
given : x + 1/x = √p
to evaluate x⁴ + 1/x⁴
x + 1/x = √p
squaring both sides
(x + 1/x)² = (√p)²
=> x² + 1/x² + 2*x*1/x = p
=> x² + 1/x² + 2 = p
=> x² + 1/x² = p - 2
again squaring both sides
=> (x² + 1/x²)² = (p - 1)²
=> x⁴ + 1/x⁴ + 2 * x² * 1/x² = p² - 2p + 1
=> x⁴ + 1/x⁴ + 2 = p² - 2p + 1
=> x⁴ + 1/x⁴ = p² - 2p + 1 - 2
=> x⁴ + 1/x⁴ = p² - 2p - 1
Similar questions