of
y = (x^4+x^2+1)/(x^2-x+1)
then
dy/dx = ???
Answers
y ( x² - x + 1 ) = x^4 + x² + 1
Now, Differentiating with respect to x
We know that,
d(uv)/dx = v du/dx + u dv/dx
=> y d/dx ( x² - x + 1 ) + ( x² - x + 1 ) dy/dx = 4x³ + 2x
y ( 2x - 1 ) + ( x ² - x + 1 ) dy/dx = 4x³ + 2x
dy/dx ( x² - x + 1 )= 4x³ + 2x - [ y ( 2x - 1 ) ]
dy/dx ( x² - x + 1 ) = 4x³ + 2x - [ ( x^4 + x² + 1 ) ( 2x - 1 ) / x² - x + 1 ]
dy/dx ( x² - x + 1 ) = 4x³ + 2x - [ 2x^5 + 2x³ + 2x - x^4 - x² - 1 / x² - x + 1 ]
dy/dx ( x² - x + 1 ) = (4x^5 - 4x^4 + 4x³ + 2x³ - 2x² + 2x - 2x^5 - 2x³ - 2x + x^4 + x² + 1 ) / ( x² - x + 1 )
dy/dx ( x² - x + 1 )² = 2x^5 - 3x^4 + 4x³ - x² + 1
So, dy/dx = 2x + 1
[ After performing Long division, We get it ]
Or
y = (x^4+x^2+1)/(x^2-x+1)
y = ( x^2 + x + 1 )( x^2 - x + 1 ) / x^2 - x + 1
y = x^2 + x + 1
dy/dx = 2x + 1 .
Hope helped!
y = ( x^4 + x^2 + 1 ) / (x² - x + 1 )
y ( x² - x + 1 ) = x^4 + x² + 1
Now, Differentiating with respect to x
We know that,
d(uv)/dx = v du/dx + u dv/dx
\frac{d}{dx} y \times ( x ^{2} - x + 1 ) = \frac{d}{dx} ( {x}^{4 } + {x}^{2} + 1)
dx
d
y×(x
2
−x+1)=
dx
d
(x
4
+x
2
+1)
=> y d/dx ( x² - x + 1 ) + ( x² - x + 1 ) dy/dx = 4x³ + 2x
y ( 2x - 1 ) + ( x ² - x + 1 ) dy/dx = 4x³ + 2x
dy/dx ( x² - x + 1 )= 4x³ + 2x - [ y ( 2x - 1 ) ]
dy/dx ( x² - x + 1 ) = 4x³ + 2x - [ ( x^4 + x² + 1 ) ( 2x - 1 ) / x² - x + 1 ]
dy/dx ( x² - x + 1 ) = 4x³ + 2x - [ 2x^5 + 2x³ + 2x - x^4 - x² - 1 / x² - x + 1 ]
dy/dx ( x² - x + 1 ) = (4x^5 - 4x^4 + 4x³ + 2x³ - 2x² + 2x - 2x^5 - 2x³ - 2x + x^4 + x² + 1 ) / ( x² - x + 1 )
dy/dx ( x² - x + 1 )² = 2x^5 - 3x^4 + 4x³ - x² + 1
\frac{dy}{dx} = \frac{2 {x}^{5} - 3 {x}^{4} + 4 {x}^{3} - {x}^{2} + 1 }{ {x}^{4} + {x}^{2} + 1 - 2 {x}^{3} - 2x + 2 {x}^{2} }
dx
dy
=
x
4
+x
2
+1−2x
3
−2x+2x
2
2x
5
−3x
4
+4x
3
−x
2
+1
{\frac{dy}{dx} = \frac{2 {x}^{5} - 3 {x}^{4} + 4 {x}^{3} - {x}^{2} + 1 }{ {x}^{4} - 2 {x}^{3} + 3{x}^{2} - 2x + 1 }}
dx
dy
=
x
4
−2x
3
+3x
2
−2x+1
2x
5
−3x
4
+4x
3
−x
2
+1
So, dy/dx = 2x + 1
[ After performing Long division, We get it ]
Or
y = (x^4+x^2+1)/(x^2-x+1)
y = ( x^2 + x + 1 )( x^2 - x + 1 ) / x^2 - x + 1
y = x^2 + x + 1
dy/dx = 2x + 1 .
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬