Math, asked by suchalenterprises, 2 months ago

of y2 + 1/y2 equals 17/4 then what is the value of y-1/y​

Answers

Answered by LivetoLearn143
2

\large\underline{\sf{Solution-}}

It is given that .

\rm :\longmapsto\: {y}^{2} + \dfrac{1}{ {y}^{2} } = \dfrac{17}{4}

On Subtracting 2, from both sides

\rm :\longmapsto\: {y}^{2} + \dfrac{1}{ {y}^{2} } - 2 = \dfrac{17}{4}  - 2

\rm :\longmapsto\: {y}^{2} + \dfrac{1}{ {y}^{2} } - 2 \times y \times \dfrac{1}{y}  = \dfrac{17 - 8}{4}

\rm :\longmapsto\: {\bigg(y - \dfrac{1}{y} \bigg) }^{2} = \dfrac{9}{4}

\rm :\longmapsto\:( \because \:  {x}^{2} +  {y}^{2}  - 2xy =  {(x - y)}^{2})

\rm :\longmapsto\: y - \dfrac{1}{y} = \:  \pm \:  \dfrac{3}{2}

Answered by prakhyatpandit786
2

Step-by-step explanation:

Answer is either +3/2 or -3/2

Attachments:
Similar questions