Physics, asked by shifabee77, 6 hours ago

ऑब्जेक्ट चेंज इन वेलोसिटी ऑफ 20 मीटर पर सेकंड 30 मीटर पर सेकंड में 10 सेकंड कैलकुलेट इट्स एप्लीकेशन​

Answers

Answered by Anonymous
5

Proper question: An object change its velocity from 20 metre per second to 30 metre per second in 10 seconds then calculate the acceleration!

Provided that:

  • Initial velocity = 20 m/s
  • Final velocity = 30 m/s
  • Time = 10 seconds

To calculate:

  • The acceleration

Solution:

  • The acceleration = 1 m/s sq.

Using concept(s):

We can use either first equation of motion or formula to calculate acceleration.

  • Choice may vary!

Using formula(s):

First equation of motion,

  • {\small{\underline{\boxed{\pmb{\sf{v \: = u \: + at}}}}}}

Acceleration formula,

  • {\small{\underline{\boxed{\pmb{\sf{a \: = \dfrac{v-u}{t}}}}}}}

Where, a denotes acceleration, u denotes initial velocity, v denotes final velocity and t denotes time taken.

Required solution:

~ Firstly let us calculate the acceleration by using first equation of motion!

:\implies \sf v \: = u \: + at \\ \\ :\implies \sf 30 = 20 + (a)(10) \\ \\ :\implies \sf 30 = 20 + (10a) \\ \\ :\implies \sf 30 - 20 = 10a \\ \\ :\implies \sf 10 = 10a \\ \\ :\implies \sf \dfrac{10}{10} \: = a \\ \\ :\implies \sf 1 \: = a \\ \\ :\implies \sf a \: = 1 \: ms^{-2} \\ \\ :\implies \sf Acceleration \: = 1 \: ms^{-2}

~ Now by using acceleration formula, let us calculate the acceleration of the object!

:\implies \sf Acceleration \: = \dfrac{Change \: in \: velocity}{Time} \\ \\ :\implies \sf a \: = \dfrac{v-u}{t} \\ \\ :\implies \sf a \: = \dfrac{30-20}{10} \\ \\ :\implies \sf a \: = \dfrac{10}{10} \\ \\ :\implies \sf a \: = 1 \: ms^{-2} \\ \\ :\implies \sf Acceleration \: = 1 \: ms^{-2}

Answered by NewGeneEinstein
3

Answer:-

  • Initial velocity=u=20m/s
  • Final velocity=v=30m/s
  • Time=t=10s

We know that

\boxed{\sf Acceleration=\dfrac{v-u}{t}}

\\ \sf\longmapsto Acceleration=\dfrac{30-20}{10}

\\ \sf\longmapsto Acceleration=\dfrac{10}{10}

\\ \sf\longmapsto Acceleration=1m/s^2

Similar questions