Physics, asked by pragyansalui, 3 months ago

On a 120 km track, a train travels the first 30 km a uniform
speed of 30km/hr. How fast must the train travel the next
90km so as to average 60km/hr for the entire trip?

Answers

Answered by Anonymous
9

Answer:

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{1mm}\put(1,1){\line(1,0){6.8}}\end{picture}

  • Total distance (D) = 120 km
  • Distance travelled by the train in first half (D₁) = 30 km
  • Distance travelled by the train in second half (D₂) = 90 km
  • Speed of the train in first half (S₁) = 30 km/h
  • Speed of the train in second half (S₂) = ?
  • Average Speed = 60 km/h

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{1mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\longrightarrow\:\:\tt Average \:  Speed = \dfrac{Total  \: distance}{Total  \: time} \\

\longrightarrow\:\:\tt Average \:  Speed = \dfrac{Total  \: distance}{\dfrac{Distance}{Speed}} \\

\longrightarrow\:\:\tt Average \:  Speed = \dfrac{D}{\dfrac{D_1}{S_1}  +   \dfrac{D_2}{S_2} } \\

\longrightarrow\:\:\tt 60 = \dfrac{120}{\dfrac{30}{30}  +   \dfrac{90}{S_2} } \\

\longrightarrow\:\:\tt 60 = \dfrac{120}{1 +   \dfrac{90}{S_2} } \\

\longrightarrow\:\:\tt 60 = \dfrac{120}{\dfrac{S_2  +  90}{S_2} } \\

\longrightarrow\:\:\tt 60 =120 \times\dfrac{S_2 }{S_2  +  90}  \\

\longrightarrow\:\:\tt  \dfrac{60}{120} =\dfrac{S_2 }{S_2  +  90}  \\

\longrightarrow\:\:\tt  \dfrac{1}{2} =\dfrac{S_2 }{S_2  +  90}  \\

\longrightarrow\:\:\tt  1( S_2  +  90)=2(S_2)   \\

\longrightarrow\:\:\tt   S_2  +  90=2S_2   \\

\longrightarrow\:\:\tt  2S_2 - S_2    = 90\\

\longrightarrow\:\: \underline{ \underline{\tt  S_2 = 90  \: {km}^{ - 1}}} \\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{1mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Similar questions