Math, asked by nights9, 10 months ago

on a certain sum the CI in 2 years amounts to rupees 2256 if the rates for successive years are 8% and 10% respectively find the sum​ . Please solve the question with a proper working

Answers

Answered by RvChaudharY50
18

Gɪᴠᴇɴ :-

  • Amount = Rs.2256 .
  • Time = 2 Years.
  • Rate in First Year = 8% .
  • Rate in second Year = 10% .

Tᴏ Fɪɴᴅ :-

  • Principal ?

Fᴏʀᴍᴜʟᴀ ᴜsᴇᴅ :-

  • Amount = Principal * (100 + R1%/100) * (100 + R2%/100)

Sᴏʟᴜᴛɪᴏɴ :-

Let us Assume That the sum was Rs.P.

Putting all values in Above told formula now, we get :-

→ P * (100 + 8/100) * (100 + 10/100) = 2256

→ P * (108/100) * (110/100) = 2256

→ P * (27/25) * (11/10) * 2256

→ P * 27 * 11 = 2256 * 250

→ P = (2256 * 250)/(27*11)

→ P = Rs.1898.98 (Ans.)

Hence, The Required Sum is Rs.1898.98.

Answered by Anonymous
71

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

  • Amount= 2256
  • n= 2 years
  • Rate1 = 8%
  • Rate2 = 10%

{\bf{\blue{\underline{Find:}}}}

  • Principal =?

{\bf{\blue{\underline{Now:}}}}

{\implies{\sf{ \:   A = P \bigg(1 +  \frac{ R_{1} }{100} \bigg) \bigg(1 +  \frac{ R_{1}}{100}   \bigg)}}} \\ \\

{\implies{\sf{ \:   A = P\bigg(1 +  \frac{ 8}{100} \bigg) \bigg(1 +  \frac{ 10}{100}   \bigg)}}} \\ \\

{\implies{\sf{ \:   A = P \bigg(  \frac{ 100 + 8}{100} \bigg) \bigg( \frac{ 100 + 10}{100}   \bigg)}}} \\ \\

{\implies{\sf{ \:   A = P \bigg(  \frac{ 108}{100} \bigg) \bigg( \frac{ 110}{100}   \bigg)}}} \\ \\

{\implies{\sf{ \:   A= P \bigg(  \frac{ 27}{25} \bigg) \bigg( \frac{ 11}{10}   \bigg)}}} \\ \\

 {\implies{\sf{ \:   A = P \bigg(  \frac{ 297}{250} \bigg) }}} \\ \\

{\implies{\sf{ \:   2256  \times 250= P \times 297  }}} \\ \\

{\implies{\sf{ \:   564000= p \times 297  }}} \\ \\

{\implies{\sf{ \:    \frac{564000}{297} = p   }}} \\ \\

 {\implies \boxed{\sf{ \:    P  = 1898.98rs  }}} \\ \\

Similar questions