Math, asked by kkdev3231, 9 months ago

On a graph, two-line segments, AB and CD of equal length are drawn. Which of these could be the coordinates of the points, A, B, C and D? * 1 point A(3,4) , B(-1,2) , C(3,4) , D(1,2) A(-3, 4) , B(-1,-2), C(3,4) , D(1,2) A(-3,-4) , B(-1,2) , C(3,4) , D(1,2) A(-3,4) , B(-1,2) , C(3,4), D(1,2)

Answers

Answered by amitnrw
4

Given :  two-line segments, AB and CD of equal length

To Find :  Which of these could be the coordinates of the points

A(3,4) , B(-1,2) , C(3,4) , D(1,2)

A(-3, 4) , B(-1,-2), C(3,4) , D(1,2)

A(-3,-4) , B(-1,2) , C(3,4) , D(1,2)

A(-3,4) , B(-1,2) , C(3,4), D(1,2)

Solution:

AB = CD

as length is always positive

Hence AB = CD  if AB² = CD²

Distance formula between points (a , b) and ( c , d)

is √(c - a)² + ( d - b)²

Checking each option one by one

A(3,4) , B(-1,2) , C(3,4) , D(1,2)

AB² = (-1 - 3)² + (2 - 4)²  = 16 + 4 = 20

CD² = (1 - 3)² + (2 - 4)² = 4 + 4 =  8

AB² ≠ CD²

A(-3, 4) , B(-1,-2), C(3,4) , D(1,2)

AB² = (-1 -(-3))² + (-2 - 4)²  = 4 + 36 = 40

CD² = (1 - 3)² + (2 - 4)² = 4 + 4 =  8

AB² ≠  CD²

A(-3,-4) , B(-1,2) , C(3,4) , D(1,2)

AB² = (-1 - (-3))² + (2 - (-4))²  =4 + 36 = 40

CD² = (1 - 3)² + (2 - 4)² = 4 + 4 =  8

AB² ≠ CD²

A(-3,4) , B(-1,2) , C(3,4), D(1,2)

AB² = (-1 -(-3))² + (2 - 4)²  = 4 + 4 = 8

CD² = (1 - 3)² + (2 - 4)² = 4 + 4 =  8

AB² = CD²

Hence A(-3,4) , B(-1,2) , C(3,4), D(1,2)  could be the coordinates of the points, A, B, C and D

Learn More:

If P (-1,1) is the midpoint of the line segment joining A(-3,b) and B (1 ...

brainly.in/question/13203314

In a triangle ABD, C is the midpoint of BD. If AB=10, AD=12, AC=9 ...

brainly.in/question/13399658

Similar questions