Physics, asked by lilmag8463, 9 months ago

On a horizontal rought rood , value of coefficient of friction mu =0.4.Find the minimum time in which a distance of 400m can be covered. The car start from rest and finally comes to rest.

Answers

Answered by qwchair
0

It's 20 second.

We hace given coefficient of friction mu= .4

Friction force(f)=mu into normal=mu into mg

So maximum acceleration=f/m=4

Let car accelerate &retards for time 't' with 4m/sec^2:

(1/2)at^2+(1/2)at^2=400

So t =10second

Hence minimum time will be t+t=20seconds.

Answered by roshinik1219
3

Given:

Value of coefficient of friction (\mu) = 0.4.

Distance = 400m

To find: Minimum time in which given distance is covered.

Solution:

                  Maximum friction on horizontal rough road,

                                    f_(max) = \mu_(mg)

Maximum acceleration or retardation of the car may be

                              a_(max) or a=  \frac{f_(max)}{m} \\                 \\

                                                = \frac{\mu mg}{m} \\                            = \mu g

                                                =0.4\times10=4m/s^2

Maximum acceleration or retardation of the car is  4m/s^2

Let , the rest car acceleration and retards for time 't' with 4m/s^2

                 Then,  

                               \frac{1}{2} at^2+\frac{1}{2} at^2   =   400m

                               at^2=400m

                              4t^2=400

       or                   t=10s

Therefore the minimum time is 20s (10s of acceleration and 10s of    retardation).

Similar questions