Math, asked by lucky221, 1 year ago

on a straight line passing through the foot of the tower two points. C and D are a distance of 4 m and 16 m from the foot respectively if the angle of elevation of c and d from the top of the tower are complementary then find the height of the tower

Answers

Answered by mathdude500
4

Answer:

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}}

Given :-

  • Let the angle of elevation /_ACB & /_ADB be θ and 90° - θ.
  • Let AC = 4 m and AD = 16 m.
  • Let 'h' be the height of the tower AB.

To Find :-

  • Height of tower 'h'.

Formula used :-

◇ tan (90° - θ ) = cot θ

◇ cot θ = 1/ tanθ

Solution:-

Now, In right triangle ABC

 \large\bold\red{tanθ  \:  =  \frac{AB}{AC} }

 \large\bold\red{tanθ  =  \frac{h}{4} }......(1)

Now, In right triangle ADB

 \large\bold\red{tan(90 - θ ) =  \frac{AB}{AD} }

 \large\bold\red{cotθ  =  \frac{h}{16} }.....(2)

Multiply (1) and (2), we get

 \large\bold\red{tanθ \times cot θ =  \frac{h}{4}   \times  \frac{h}{16} }

 \large\bold\red{tanθ \times  \frac{1}{tanθ }  =  \frac{h}{4}   \times  \frac{h}{16} }

 \large\bold\red{1 =  \frac{ {h}^{2} }{64} }

 \large\bold\red{ {h}^{2}  = 64}

 \large\bold\red{⟹ \: h \:  = 8 \: m}

Attachments:
Similar questions