Physics, asked by abhishekso831, 6 months ago

On applying a force F

= (3i − 4j + 9k )N on an object

the body get displaced S = (3i + 4j + 8k) m. Calculate the

work done by force?​

Answers

Answered by ishikagupta88743
1

Answer:

65 Joule

Explanation:

W=F.S

(3i-4j+9k).(3i+4j+8k)

9-16+72

= 65 joule

Answered by Atαrαh
4

Given :

  • \mathtt{F = (3\hat{i} - 4\hat{j} +9\hat{k})N} \\ \\
  • \mathtt{S = (3\hat{i} + 4\hat{j} +8\hat{k})m }\\ \\

To find :

  • Work done by the force

Solution :

The work done by an object is a scalar product of force and displacement .

Hence ,

\leadsto \mathtt{W = \overrightarrow{F}.\overrightarrow{s}}\\ \\

Now let's substitute the given values in the above equation ,

\leadsto \mathtt{W = (3\hat{i} - 4\hat{j} +9\hat{k}).}(3\hat{i} + 4\hat{j} +8\hat{k})\\ \\

Note :

\leadsto \mathtt{\overrightarrow{A}.\overrightarrow{B}}= {(a\hat{i} + b\hat{j} +c\hat{k}).(e\hat{i} + f\hat{j} +g\hat{k})}\\ \\ \leadsto \mathtt{\overrightarrow{A}.\overrightarrow{B} = a . e + b.f +c.g  }\\ \\

Hence ,

\leadsto \mathtt{W = 3 \times 3 + (-4 \times 4 ) + 9 \times 8 }\\ \\

\leadsto \mathtt{W = 9 - 16 + 72 }\\ \\

\leadsto \mathtt{W = 81  - 16 }\\ \\

\leadsto\underline{\boxed{\mathtt{W = 65 J }}}

The work done by the force is 65 J

Similar questions