Math, asked by ektapanday502, 1 month ago

on dividing 3x^3+x^2+2x+5 by a polynomial g(x) the quotient and remainder are 3x-5 and 9x+10 respectively find g(x)​

Answers

Answered by siddharthakushwaha17
0

Step-by-step explanation:

Here, Dividend = 3x³+x²+2x+5

Quotient = g(x)

Remainder = 9x+10

Divisor = 3x-5

Dividend = Quotient × Divisor + Remainder

Quotient = Dividend / Divisor + Remainder

Therefore,

g(x) = Quotient

Further, you can solve..

Answered by BabeHeart
5

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \large\fcolorbox{teal}{lavenderblush}{Question⋆᭄᭄}

ᴏɴ ᴅɪᴠɪᴅɪɴɢ 3x³+x²+2x+5 ʙʏ ᴀ ᴘᴏʟʏɴᴏᴍɪᴀʟ g(x) ᴛʜᴇ ǫᴜᴏᴛɪᴇɴᴛ ᴀɴᴅ ʀᴇᴍᴀɪɴᴅᴇʀ ᴀʀᴇ 3x-5 ᴀɴᴅ 9x+10 ʀᴇsᴘᴇᴄᴛɪᴠᴇʟʏ ғɪɴᴅ g(x)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \large\fcolorbox{teal}{lavenderblush}{Ꭺnѕwєr⋆᭄᭄}

 \bf \green{ 『 \: By  \: using \:  division \:  rule ,we  \: have \: 』  }\\\sf \blue{ Dividend = Quotient × Divisor + Remainder}

  \sf\therefore \: 3 {x}^{3}  +  {x}^{2}  + 2x + 5 \\   \sf= (3x - 5)g(x) + 9x

  \sf\implies \: 3 {x}^{3}  +  {x}^{2}  + 2x + 5x - 9x - 10 \\  \sf = (3x - 5)g(x)

  \sf\implies \: 3 {x}^{3}  +  {x}^{2}  - 7x - 5 \\ \sf  = (3x - 5)g(x)

  \large\rightarrow \sf  \:  \frac{g(x) = 3 {x}^{3} +  {x}^{2} - 7x - 5  }{3x - 5}

━━━━━━━━━━━━━━━━━━━━━━━━━━

3x - 5 ) 3x³ + x² - 7x + 5( x² + 2x + 1

           3x³ - 5x

         -------------------------

              6x² -  7x  -  5

              6x²  - 10x

          --------------------------

                           3x - 5⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3x - 5

⠀⠀⠀⠀⠀--------------------------

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x

  \large \bf   \blue{\therefore  }\green{ g(x) =  {x}^{2}  + 2x + 1}

     

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions