Math, asked by santhokumar8130, 1 year ago

On dividing 3x3-2x2-5x+5 by a polynomial p(x) the quotient and the remainder are x2+px+q and 3 respectively. find p(x)

Answers

Answered by slicergiza
2

\dfrac{3x^2-2x^2-5x+2}{x^2+px+q}

Step-by-step explanation:

We know that,

Dividend = Divisor × Quotient + Remainder

Here,

Dividend = 3x³ - 2x² -5x + 5

Divisor = p(x)

Quotient = x² + px + q

Remainder = 3

By substituting the values,

We get,

3x^3-2x^2-5x+5 = p(x)\times (x^2+px+q) + 3

3x^3-2x^2-5x+5 - 3 = p(x)\times (x^2+px+q)

3x^3-2x^2-5x+2 = p(x)\times (x^2+px+q)

\implies p(x) = \frac{3x^3-2x^2-5x+2}{x^2+px+q}

#Learn more :

Divide polynomials using long division method :

https://brainly.in/question/13071405

https://brainly.in/question/1190082

Answered by presentmoment
0

$p(x)=\frac{3x^3-2x^2-5x+2}{(x^2+px+q)}

Solution:

Dividend = (3x^3-2x^2-5x+5)

Quotient = (x^2+px+q)

Remainder = 3

Divisor = p(x)

To find p(x):

Dividend = Divisor × Quotient + Remainder

3x^3-2x^2-5x+5=p(x)\times(x^2+px+q)+3

Subtract 3 on both sides of the equation.

3x^3-2x^2-5x+5-3=p(x)\times(x^2+px+q)+3-3

3x^3-2x^2-5x+2=p(x)\times(x^2+px+q)

Divide by (x^2+px+q) on both side of the equation.

$\frac{3x^3-2x^2-5x+2}{(x^2+px+q)} =p(x)\times\frac{(x^2+px+q)}{(x^2+px+q)}

$\frac{3x^3-2x^2-5x+2}{(x^2+px+q)} =p(x)\times1

$\frac{3x^3-2x^2-5x+2}{(x^2+px+q)} =p(x)

Hence,

$p(x)=\frac{3x^3-2x^2-5x+2}{(x^2+px+q)}

Similar questions