On dividing polinomial 2x³+ax²+3x-5 by x-1 , the remainder is 7.Find the value of a.
Answers
Answered by
3
Here is your solution,
x-1 = 0
x = 1
p(x) = 2x³ + ax² + 3x - 5
p(1) = 2×(1)³ + a×(1)² + 3×1 - 5
= 2×1 + a + 3 - 5
= 2+a+3-5
= 0 + a =7
a = 7-0
a = 7
So, the value of a is 7
Hope it helped..................
Anonymous:
yes
I've passed 9th last year only.
Answered by
2
2x³+ax²+3x-5÷x-1=7
2x³+ax²+3x÷x=7+5+1
x(2x²+ax+3x÷1)=13
2x²+ax+3x÷1=13x
x(2x+a+3÷1)=13x
x(a+3)=13x-2x
x(a+3)=11x
a+3=11x²
a/x²=11-3
a/x²=8
a=8x²
I hope it helps
2x³+ax²+3x÷x=7+5+1
x(2x²+ax+3x÷1)=13
2x²+ax+3x÷1=13x
x(2x+a+3÷1)=13x
x(a+3)=13x-2x
x(a+3)=11x
a+3=11x²
a/x²=11-3
a/x²=8
a=8x²
I hope it helps
Similar questions
English,
8 months ago
Social Sciences,
8 months ago
English,
1 year ago
Math,
1 year ago
Physics,
1 year ago