Math, asked by sarveshrane709, 1 month ago

on dividing the polynomial 2x³-5x²+8x-5 by a polynomial g(x) the quotient and the remainder are (2x-3) and (3x-2) respectively find g(x).​

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Let we assume that

\rm :\longmapsto\:f(x) =  {2x}^{3} -  {5x}^{2} + 8x - 5

\rm :\longmapsto\:q(x) = 2x - 3

\rm :\longmapsto\:r(x) = 3x - 2

We know,

\boxed{ \rm{ Dividend = Divisor × Quotient + Remainder}}

\rm :\longmapsto\:f(x) = q(x) \times g(x) + r(x)

\rm :\longmapsto\:f(x) - r(x) = q(x) \times g(x)

\rm :\longmapsto\:g(x) = \dfrac{f(x) - r(x)}{q(x)}

\rm :\longmapsto\:g(x) = \dfrac{ {2x}^{3} -  {5x}^{2} + 8x - 5 - (3x - 2)}{2x - 3}

\rm :\longmapsto\:g(x) = \dfrac{ {2x}^{3} -  {5x}^{2} + 8x - 5 - 3x + 2}{2x - 3}

\rm :\longmapsto\:g(x) = \dfrac{ {2x}^{3} -  {5x}^{2} + 5x - 3}{2x - 3}

Now, using Long Division, we get

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\: {x}^{2} - x + 1\:\:}}}\\ {\underline{\sf{2x - 3}}}& {\sf{\: {2x}^{3}  -  {5x}^{2} + 5x  - 3 \:\:}} \\{\sf{}}& \underline{\sf{ \:  -2{x}^{3}  \: + 3 {x}^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:\:}} \\ {{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \: \: -  2{x}^{2} + 5x - 3 \:  \:  \:  \:   \:  \:  \:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:  \:  \:\:   \:  \:  \:  \: 2{x}^{2}  - 3x  \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \:  \:  \:  \:  \:  \:    2x - 3  \:\:}} \\{\sf{}}& \underline{\sf{\: \:  \:  \:  \:  \: - 2x   + 3\:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \: \:  \:  \:  \:  \:  \:  \:  \:  0\:\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered}

Hence,

\bf\implies \:g(x) =  {x}^{2} - x + 1

ADDITIONAL INFORMATION :-

1. For cubic polynomial

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha +   \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha \beta  +   \beta  \gamma  +  \gamma   \alpha = \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

2. For quadratic polynomial

\red{\rm :\longmapsto\: \alpha , \beta   \: are \: zeroes \: of \: a {x}^{2}  + b {x} +  c, \: then}

\boxed{ \bf{ \:  \alpha   + \beta    =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha \beta    =  \dfrac{c}{a}}}

Answered by RvChaudharY50
0

Given :- on dividing the polynomial 2x³-5x²+8x-5 by a polynomial g(x) the quotient and the remainder are (2x-3) and (3x-2) respectively find g(x). ?

Solution :-

we know that,

  • Dividend = Divisor × Quotient + Remainder.

given

→ Dividend = 2x³-5x²+8x-5

→ Divisor = g(x)

→ Quotient = (2x - 3)

→ Remainder = (3x - 2)

so,

→ 2x³-5x²+8x-5 = g(x) * (2x - 3) + (3x - 2)

→ 2x³-5x²+8x-5 - 3x + 2 = g(x) * (2x - 3)

→ g(x) = 2x³ - 5x² + 5x - 3 / 2x - 3

dividing now, we get

2x - 3 ) 2x³ - 5x² + 5x - 3 ( x² - x + 1

2x³ - 3

-2x² + 5x

-2x² + 3x

2x - 3

2x - 3

0

therefore,

→ Quotient = g(x) = x² - x + 1 (Ans.)

Learn more :-

JEE mains Question :-

https://brainly.in/question/22246812

. Find all the zeroes of the polynomial x4

– 5x3 + 2x2+10x-8, if two of its zeroes are 4 and 1.

https://brainly.in/question/39026698

Similar questions