On dividing the polynomial 4x^4-5x^3-39x^2-46x-2 by polynomial g(x), the quotient and remainder are x^2-3x-5 and -5x+8 respectively. Find g(x)
Answers
Answered by
58
Given polynomial p(x) = 4x^4 - 5x^3 - 39x^2 - 46x - 2.
Given Quotient q(x) = x^2 - 3x - 5
Given Remainder r(x) = -5x + 8.
We know that g(x) = p(x) - r(x)/q(x)
= 4x^4 - 5x^3 - 39x^2 - 46x - 2 - (-5x + 8)/x^2 - 3x - 5
= 4x^4 - 5x^3 - 39x^2 - 46x - 2 + 5x - 8/x^2 - 3x - 5
= 4x^4 - 5x^3 - 39x^2 - 41x - 10/x^2 - 3x - 5.
Now,
4x^2 + 7x + 2
-----------------------------------------------------
x^2 - 3x - 5) 4x^4 - 5x^3 - 39x^2 - 41x - 10
4x^4 - 12x^3 - 20x^2
-----------------------------------------------------------
7x^3 - 19x^2 - 41x
7x^3 - 21x^2 - 35x
---------------------------------------------------------------
2x^2 - 6x - 10
2x^2 - 6x - 10
--------------------------------------------------------------------
0.
Hence, g(x) = 4x^2 + 7x + 2.
Hope this helps!
Given Quotient q(x) = x^2 - 3x - 5
Given Remainder r(x) = -5x + 8.
We know that g(x) = p(x) - r(x)/q(x)
= 4x^4 - 5x^3 - 39x^2 - 46x - 2 - (-5x + 8)/x^2 - 3x - 5
= 4x^4 - 5x^3 - 39x^2 - 46x - 2 + 5x - 8/x^2 - 3x - 5
= 4x^4 - 5x^3 - 39x^2 - 41x - 10/x^2 - 3x - 5.
Now,
4x^2 + 7x + 2
-----------------------------------------------------
x^2 - 3x - 5) 4x^4 - 5x^3 - 39x^2 - 41x - 10
4x^4 - 12x^3 - 20x^2
-----------------------------------------------------------
7x^3 - 19x^2 - 41x
7x^3 - 21x^2 - 35x
---------------------------------------------------------------
2x^2 - 6x - 10
2x^2 - 6x - 10
--------------------------------------------------------------------
0.
Hence, g(x) = 4x^2 + 7x + 2.
Hope this helps!
Answered by
25
Hi,
Please see the attached file!
Thanks
Please see the attached file!
Thanks
Attachments:
Similar questions