On dividing the polynomial x³ -5x² + 6x -4 by a polynomial g(x), quotient and remainder are (x –3) and (– 3x + 5) respectively. Find g(x).
Answers
Answered by
169
Firstly write the given values in division algorithm and then find the value of g (x). Now further divide numerator of g(x) by denominator and simplify it to get g(x).
Division algorithm:
Dividend= Divisor × Quotient + Remainder
p(x) = q(x) × g(x) + r(x)
Given:
p(x) = x³ -5x² + 6x - 4
q(x) = (x-3)
r(x)= (-3x+5)
Put the values of p(X), q(x) & r(x) in Division algorithm.
p(x) = q(x) × g(x) + r(x)
x³ -5x² + 6x - 4 = (x-3) × g(x) +(-3x+5)
x³ -5x² + 6x - 4 +3x- 5 = (x-3) × g(x)
x³ -5x² + 6x +3x- 5 - 4 = (x-3) × g(x)
x³ -5x² + 9x - 9 = (x-3) × g(x)
g(x) = x³ -5x² + 9x - 9 / (x-3)
Divide x³ -5x² + 9x - 9 by (x-3)
x-3 ) x³ -5x² + 9x - 9(x²-2x+3
x³ -3x²
(-) (+)
---------------
-2x²+9x -9
-2x²+6x
(+) (-)
----------------------
3x -9
3x -9
(-) (-)
----------------------
0
On dividing x³ -5x² + 9x - 9 by x-3, we get quotient g(x)= x²-2x+3
Hence, g(x)= x²-2x+3
HOPE THIS WILL HELP YOU....
Division algorithm:
Dividend= Divisor × Quotient + Remainder
p(x) = q(x) × g(x) + r(x)
Given:
p(x) = x³ -5x² + 6x - 4
q(x) = (x-3)
r(x)= (-3x+5)
Put the values of p(X), q(x) & r(x) in Division algorithm.
p(x) = q(x) × g(x) + r(x)
x³ -5x² + 6x - 4 = (x-3) × g(x) +(-3x+5)
x³ -5x² + 6x - 4 +3x- 5 = (x-3) × g(x)
x³ -5x² + 6x +3x- 5 - 4 = (x-3) × g(x)
x³ -5x² + 9x - 9 = (x-3) × g(x)
g(x) = x³ -5x² + 9x - 9 / (x-3)
Divide x³ -5x² + 9x - 9 by (x-3)
x-3 ) x³ -5x² + 9x - 9(x²-2x+3
x³ -3x²
(-) (+)
---------------
-2x²+9x -9
-2x²+6x
(+) (-)
----------------------
3x -9
3x -9
(-) (-)
----------------------
0
On dividing x³ -5x² + 9x - 9 by x-3, we get quotient g(x)= x²-2x+3
Hence, g(x)= x²-2x+3
HOPE THIS WILL HELP YOU....
Answered by
19
HET GUYS HERE IS MY ANSWER
WE KNOW THAT,
p(x)= q(n)×g(n) +r(n)
x³-5x²+6x-4 = (x-3)*g(m)+ (-3x+5)
x³-5x+6x-4+3n-5=(x-3)*g(n)
x³-5x+9n-9= (x-3)*g(n)
x³-5x²+9n-9
Similar questions