Math, asked by laurapremkumar, 1 month ago

On dividing x^3 - 3x^2 + x + 2 by a polynomial g(x), the quotient and remainder were x-2 and -2x+4 respectively. Find g(x)

Answers

Answered by BlessedOne
256

\large\sf\underline{Given\::}

  • \sf\:x^{3}-3x^{2}+x+2 is divided by \sf\:g(x)

  • Quotient = \sf\:(x-2)

  • Remainder = \sf\:(-2x+4)

\large\sf\underline{To\:find\::}

  • Value of \sf\:g(x) .

\large\sf\underline{Concept~to~be~used\::}

\small{\underline{\boxed{\mathrm{Dividend~=~Divisor~\times~Quotient~+~Remainder}}}}

  • Dividend :- The number to be divided.

  • Divisor :- The number which divides the other number.

  • Quotient :- Number that we get as a result after dividing dividend by a divisor.

  • Remainder :- After dividing a dividend by a divisor if some number is left which can't be divided further, that number is known as remainder.

\large\sf\underline{Solution\::}

Using,

\sf\:Dividend~=~Divisor~\times~Quotient~+~Remainder

\sf\dashrightarrow\:x^{3}-3x^{2}+x+2=g(x) \times (x-2) +(-2x+4)

\sf\dashrightarrow\:x^{3}-3x^{2}+x+2=g(x) \times (x-2) - 2x+4

  • Transposing ( -2x+4 ) to LHS it becomes ( 2x-4 )

\sf\dashrightarrow\:x^{3}-3x^{2}+x+2+2x-4=g(x) \times (x-2)

  • Arranging the terms in LHS for calculation

\sf\dashrightarrow\:x^{3}-3x^{2}+x+2x+2-4=g(x) \times (x-2)

\sf\dashrightarrow\:x^{3}-3x^{2}+3x-2=g(x) \times (x-2)

  • Transposing ( x-2 ) from RHS to LHS it goes to the denominator

\sf\dashrightarrow\:\frac{x^{3}-3x^{2}+3x-2}{x-2}=g(x)

\sf\:oR\:g(x)~=~\frac{x^{3}-3x^{2}+3x-2}{x-2}

  • Now let's proceed with division in order to get simplified value of g(x)

\sf\:x-2)\cancel{x^{3}}-3x^{2}+3x-2(x^{2}-x+1

\sf\:~~~~~~~~~~\cancel{x^{3}}-2x^{2}

\sf\:~~~~~~~~~~---------

\sf\:~~~~~~~~~~~~~~~~~~~~\cancel{x^{2}}+3x-2

\sf\:~~~~~~~~~~~~~~~~~~~~\cancel{x^{2}}+2x

\sf\:~~~~~~~~~~---------

\sf\:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\cancel{x-2}

\sf\:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\cancel{x-2}

\sf\:~~~~~~~~~~---------

\sf\:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0

Therefore, we got the quotient as \tt\:x^{2}-x+1

Henceforth the required value of :

\dag\:\underline{\sf~g(x)~=~x^{2}-x+1}

‎________________

Note :- Scroll left to right to view the answer properly !~

Answered by MrM00N
19

[tex]\large\sf\underline{Given\::}

\sf\:x^{3}-3x^{2}+x+2 is divided by \sf\:g(x)

Quotient = \sf\:(x-2)

Remainder = \sf\:(-2x+4)

\large\sf\underline{To\:find\::}

Value of \sf\:g(x) .

\large\sf\underline{Concept~to~be~used\::}

\small{\underline{\boxed{\mathrm{Dividend~=~Divisor~\times~Quotient~+~Remainder}}}}

Dividend :- The number to be divided.

Divisor :- The number which divides the other number.

Quotient :- Number that we get as a result after dividing dividend by a divisor.

Remainder :- After dividing a dividend by a divisor if some number is left which can't be divided further, that number is known as remainder.

\large\sf\underline{Solution\::}

Using,

\sf\:Dividend~=~Divisor~\times~Quotient~+~Remainder

\sf\dashrightarrow\:x^{3}-3x^{2}+x+2=g(x) \times (x-2) +(-2x+4)

\sf\dashrightarrow\:x^{3}-3x^{2}+x+2=g(x) \times (x-2) - 2x+4

Transposing ( -2x+4 ) to LHS it becomes ( 2x-4 )

\sf\dashrightarrow\:x^{3}-3x^{2}+x+2+2x-4=g(x) \times (x-2)

Arranging the terms in LHS for calculation

\sf\dashrightarrow\:x^{3}-3x^{2}+x+2x+2-4=g(x) \times (x-2)

\sf\dashrightarrow\:x^{3}-3x^{2}+3x-2=g(x) \times (x-2)

Transposing ( x-2 ) from RHS to LHS it goes to the denominator

\sf\dashrightarrow\:\frac{x^{3}-3x^{2}+3x-2}{x-2}=g(x)

\sf\:oR\:g(x)~=~\frac{x^{3}-3x^{2}+3x-2}{x-2}

Now let's proceed with division in order to get simplified value of g(x)

\sf\:x-2)\cancel{x^{3}}-3x^{2}+3x-2(x^{2}-x+1

\sf\:~~~~~~~~~~\cancel{x^{3}}-2x^{2}

\sf\:~~~~~~~~~~---------

\sf\:~~~~~~~~~~~~~~~~~~~~\cancel{x^{2}}+3x-2

\sf\:~~~~~~~~~~~~~~~~~~~~\cancel{x^{2}}+2x

\sf\:~~~~~~~~~~---------

\sf\:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\cancel{x-2}

\sf\:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\cancel{x-2}

\sf\:~~~~~~~~~~---------

\sf\:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0

Therefore, we got the quotient as \tt\:x^{2}-x+1

Henceforth the required value of :

\dag\:\underline{\sf~g(x)~=~x^{2}-x+1}

‎________________

Note :- Scroll left to right to view the answer properly !~[/tex]

Similar questions