Math, asked by bhuvanpranav1211, 3 months ago

On dividing x3 – 6x2 + 11x – 6 by a polynomial g(x), the quotient and the remainder were x2 – 8x + 27 and – 60 respectively. Find g(x).​

Answers

Answered by sidhusai5926
4

Step-by-step explanation:

answer to this question☝

Attachments:
Answered by amitnrw
7

Given : On dividing x3 – 6x2 + 11x – 6 by a polynomial g(x), the quotient and the remainder were x2 – 8x + 27 and – 60 respectively

To Find : g(x).​

Solution:

a = bq + r

x³ - 6x²  + 11x - 6  =  g(x) ( x²  - 8x + 27)   + (-60)

=> x³ - 6x²  + 11x + 54 = g(x) ( x²  - 8x + 27)  

=>  g(x)   = (x³ - 6x²  + 11x + 54  ) / ( x²  - 8x + 27)  

                                   x + 2

( x²  - 8x + 27)     _|     (x³ - 6x²  + 11x + 54  )   |_

                                     x³ - 8x²  +27x

                                    ____________

                                          2x²  - 16x  + 54

                                           2x²  - 16x  + 54

                                            _____________

                                                        0

Quotient is x + 2

Learn More:

on dividing x3-3x2+x+2 by a polynomial g(x),the quotient and ...

brainly.in/question/3135153

Divide 9x^3+3x^2-5x+7 by (3x-1) write the quotient and remainder ...

brainly.in/question/6190809

Divide the polynomial (6x³ + 11x² - 10x - 7) by the binomial (2x + 1 ...

brainly.in/question/4743553

Similar questions