Math, asked by adhithG, 10 months ago

on rationalising the denominator of 1/√3-√2​

Answers

Answered by 007Boy
3

Question :-

rationalize the denominator of 1/√3-√2.

Solution :-

 \frac{1}{ \sqrt{3}  -  \sqrt{2} }  \\ \\  \\  multiply \: by \: ( \sqrt{3}  +  \sqrt{2} ) \: in \: the \: numerator \: and \: denominator \\  \\  \frac{1}{ \sqrt{ 3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }  \\  \\  \frac{ \sqrt{3}  +  \sqrt{2} }{ (\sqrt{3} ) {}^{2} - ( \sqrt{2}  ) {}^{2} }  \\  \\  \frac{ \sqrt{3} +  \sqrt{2}  }{3 - 2}  =  (\sqrt{3}  +  \sqrt{2} ) \:  \:  \:  \:  \:  \: ans

Formulae used :-

1) \:  \:  \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}   \\  \\  \\   2) \:  \:  (\sqrt{x}) {}^{2}   = x

Answered by InfiniteSoul
5

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{\bf{Question}}}}}}}}

rationalize the denominator

\sf\dfrac{1}{\sqrt{3} - \sqrt{2}}

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{\bf{Solution}}}}}}}}

\implies\sf\dfrac{1}{\sqrt{3} - \sqrt{2}}

\implies\sf\dfrac{1}{\sqrt{3} - \sqrt{2}} \times \dfrac{\sqrt 3 + \sqrt 2}{\sqrt 3 + \sqrt 2}

{\bold{\blue{\boxed{\bf{(a+b)(a-b) = a^2 - b^2 }}}}}

\implies\sf\dfrac{\sqrt{3} +\sqrt{2}}{\sqrt{3}^2- \sqrt{2}^2}

\implies\sf\dfrac{\sqrt{3} + \sqrt{2}}{3- 2}

\implies\sf\dfrac{\sqrt{3} + \sqrt{2}}{1}

\implies\sf{\sqrt{3} +\sqrt{2}}

{\bold{\blue{\boxed{\bf{\dag\sqrt 3 + \sqrt 2}}}}}

______________________❤

THANK YOU❤

Similar questions