Math, asked by shanthimelisha4798, 11 months ago

On simplification 2^x+3 × 3^2x-y × 5^x+y+3 × 6^y+1/ 6^x+1 × 10^y+3 × 15^x reduces to

Answers

Answered by MaheswariS
34

\textbf{Given:}

\dfrac{2^{x+3}{\times}3^{2x-y}{\times}5^{x+y+3}{\times}6^{y+1}}{6^{x+1}{\times}10^{y+3}{\times}15^x}

\textbf{To find:}

\text{Simplified form of $\dfrac{2^{x+3}{\times}3^{2x-y}{\times}5^{x+y+3}{\times}6^{y+1}}{6^{x+1}{\times}10^{y+3}{\times}15^x}$}

\textbf{Solution:}

\text{Consider,}

\dfrac{2^{x+3}{\times}3^{2x-y}{\times}5^{x+y+3}{\times}6^{y+1}}{6^{x+1}{\times}10^{y+3}{\times}15^x}

=\dfrac{2^{x+3}{\times}3^{2x-y}{\times}5^{x+y+3}{\times}2^{y+1}{\times}3^{y+1}}{2^{x+1}{\times}3^{x+1}{\times}2^{y+3}{\times}5^{y+3}{\times}3^x{\times}5^x}

=\dfrac{2^{x+y+4}{\times}3^{2x+1}{\times}5^{x+y+3}}{2^{x+y+4}{\times}3^{2x+1}{\times}5^{x+y+3}}

=1 \;\;\;\;(\text{$\because$ both numerator and denominator having same factors}

\therefore\bf\dfrac{2^{x+3}{\times}3^{2x-y}{\times}5^{x+y+3}{\times}6^{y+1}}{6^{x+1}{\times}10^{y+3}{\times}15^x}=1

Find more:

Simplify 73*73*73+27*27*27/73*73-73*27+27*27

https://brainly.in/question/2079320

Answered by mansisharma0401
16

Step-by-step explanation:

my answer is explained in above image.

and i have also mentioned some identities which i used above

Attachments:
Similar questions