On solving 2 X + 3 y = 11 and 2 x - 4 Y = - 24 and hence find the value of m for which Y is M X + 3
Answers
Answer:
x = -2 ; y = 5 ; m = - 1
Step-by-step explanation:
2x + 3y = 11 ...(1) 2x - 4y = -24 ...(2)
Subtract (1) from (2),
2x - 4y = -24
2x +3y = 11
(-) (-) = (-)
0 - 7y = -35
⇒ y = 5, substitute this in (1)
⇒ 2x + 3(5) = 11
⇒ 2x = - 4
⇒ x = -2
Therefore, as given in question:
⇒ y = mx + 3
⇒ 5 = m(-2) + 3
⇒ 2 = -2m
⇒ - 1 = m
Required vale of m is -1.
Given :-
2x + 3y = 11
2x - 4y = -24
To Find :-
Value of x and y
Then find the value of m
Solution :-
2x + 3y = 11
2x = 11 - 3y
x = 11 - 3y/2 (i)
2x - 4y = -24
Putting value of x from 1
2(11 - 3y/2) - 4y = -24
11 - 3y - 4y = -24
11 - 7y = -24
-7y = -24 - 11
-7y = -35
y = -35/-7
y = 5
Now
Using 1
x = 11 - 3(5)/2
x = 11 - 15/2
x = -4/2
x = -2
Now
y = mx + 3
5 = m(-2) + 3
5 = -2m + 3
5 - 3 = -2m
2 = -2m
2/-2 = m
-1 = m
Henceforth
Value of m is -1