Math, asked by pallalit010, 1 month ago

On solving 2 X + 3 y = 11 and 2 x - 4 Y = - 24 and hence find the value of m for which Y is M X + 3

Answers

Answered by abhi569
80

Answer:

x = -2   ;   y = 5    ;    m = - 1

Step-by-step explanation:

2x + 3y = 11    ...(1)   2x - 4y = -24   ...(2)

     Subtract (1) from (2),

            2x - 4y = -24

            2x +3y = 11

          (-)   (-)    = (-)    

          0  - 7y   = -35  

⇒ y = 5,   substitute this in (1)

                  ⇒ 2x + 3(5) = 11

                  ⇒ 2x = - 4

                  ⇒ x = -2

Therefore,   as given in question:

  ⇒ y = mx + 3

  ⇒ 5 = m(-2) + 3

  ⇒ 2 = -2m

  ⇒ - 1 = m

           Required vale of m is -1.

Answered by Itzheartcracer
29

Given :-

2x + 3y = 11

2x - 4y = -24

To Find :-

Value of x and y

Then find the value of m

Solution :-

2x + 3y = 11

2x = 11 - 3y

x = 11 - 3y/2 (i)

2x - 4y = -24

Putting value of x from 1

2(11 - 3y/2) - 4y = -24

11 - 3y - 4y = -24

11 - 7y = -24

-7y = -24 - 11

-7y = -35

y = -35/-7

y = 5

Now

Using 1

x = 11 - 3(5)/2

x = 11 - 15/2

x = -4/2

x  = -2

Now

y = mx + 3

5 = m(-2) + 3

5 = -2m + 3

5 - 3 = -2m

2 = -2m

2/-2 = m

-1 = m

Henceforth

Value of m is -1

Similar questions