On solving the pair of linear equations, after substitution. The values of p and q are
1 point
p = 1/4, q = 1/14
p = 1/5, q = 1/14
p = 1/4, q = 1/9
p = 1/5, q= 1/9
Answers
Answer:
Substitute this value of p in equation (1), we get
Substitute this value of p in equation (1), we get2(
Substitute this value of p in equation (1), we get2( 3
Substitute this value of p in equation (1), we get2( 312+2q
Substitute this value of p in equation (1), we get2( 312+2q
Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5
Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15
Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39
Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3
Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).
Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p=
Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p= 3
Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p= 312+2(−3)
Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p= 312+2(−3)
Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p= 312+2(−3)
Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p= 312+2(−3) ⇒p=
Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p= 312+2(−3) ⇒p= 3
Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p= 312+2(−3) ⇒p= 312−6
Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p= 312+2(−3) ⇒p= 312−6
Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p= 312+2(−3) ⇒p= 312−6
Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p= 312+2(−3) ⇒p= 312−6 ⇒p=2
Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p= 312+2(−3) ⇒p= 312−6 ⇒p=2Therefore, the solution is p=2,q=−3.
Step-by-step explanation:
Helps you