Math, asked by ratnadeepjadhav4032, 1 month ago

On solving the pair of linear equations, after substitution. The values of p and q are
1 point
p = 1/4, q = 1/14
p = 1/5, q = 1/14
p = 1/4, q = 1/9
p = 1/5, q= 1/9

Answers

Answered by Zahrah2008
2

Answer:

Substitute this value of p in equation (1), we get

Substitute this value of p in equation (1), we get2(

Substitute this value of p in equation (1), we get2( 3

Substitute this value of p in equation (1), we get2( 312+2q

Substitute this value of p in equation (1), we get2( 312+2q

Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5

Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15

Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39

Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3

Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).

Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p=

Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p= 3

Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p= 312+2(−3)

Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p= 312+2(−3)

Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p= 312+2(−3)

Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p= 312+2(−3) ⇒p=

Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p= 312+2(−3) ⇒p= 3

Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p= 312+2(−3) ⇒p= 312−6

Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p= 312+2(−3) ⇒p= 312−6

Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p= 312+2(−3) ⇒p= 312−6

Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p= 312+2(−3) ⇒p= 312−6 ⇒p=2

Substitute this value of p in equation (1), we get2( 312+2q )+3q=−5⇒24+4q+9q=−15⇒13q=−39⇒q=−3Put this value of q in equation (3).p= 312+2(−3) ⇒p= 312−6 ⇒p=2Therefore, the solution is p=2,q=−3.

Step-by-step explanation:

Helps you

Similar questions