On solving the quadratic equation,
9x² - 6b²x- ( a⁴ - b⁴) = 0
the value of x is
Answers
Answered by
0
Answer:
Step-by-step explanation:
Given : 9x² - 6b²x - (a⁴ - b⁴) = 0
9x² - 6b²x - ((a²)² - (b²)²) = 0
9x² - 6b²x - (a² - b²) (a² + b²) = 0
9x² + 3 (a² - b²)x - 3 (a² + b²)x - (a² - b²) (a² + b²) = 0
[3(a² - b²) × 3 (a² + b²) = 9(a⁴ - b⁴ ) & 3 (a² - b²) - 3 (a² + b²) = - 6b²]
3x [3x(a² - b²)] - (a² + b²) [3x + (a² - b²) ] = 0
[3x + (a² - b²) ] [3x - (a² + b²) ] = 0
[3x + (a² - b²) ] = 0 or [3x - (a² + b²) ] = 0
3x = - (a² - b²) or 3x = (a² + b²)
x = [ - (a² - b²)/3] or x = [(a² + b²)/3]
x = (b² - a²)/3 or x = [(a² + b²)/3]
Hence, the roots of the quadratic equation 9x² - 6b²x - (a⁴ - b⁴) = 0 are (b² - a²)/3 & [(a² + b²)/3] .
Similar questions