Physics, asked by sssbabu1970, 9 months ago

On the moon's surface , the acceleration due to gravity is 1.67 m/s^2 . If the radius of the moon is 1.74 * 10^6 m . Calculate the mass ( G = 6.67 * 10^11 Nm^2 / kg^2 ).


pls make it fast pls..........very urgent

Answers

Answered by Anonymous
8

To Find :

  • we need to calculate the mass of moon .

Given :

  • Acceleration due to gravity = 1.67m/s²
  • Radius of moon = 1.74 × 10⁶ m

Gravitational constant G = 6.67 × 10¹¹ Nm²/kg²

Now,

We know that,

  \star \: \huge \pink{ \bf \: M =   \frac{gR²}{G}}

where,

  • M = mass of moon
  • g = acceleration due to gravity
  • R = Radius of moon
  • G = Gravitational constant

 \tt \longrightarrow{\large \:  M=  \frac{1.67 \times (1.74 \times 10 {}^{6} ) {}^{2} }{6.67 \times  {10}^{11} }}

 \tt \longrightarrow{\large \:  M =  \frac{1.67 \times (1 .74) {}^{2}  \times 10 {}^{6 {}^{2} }  }{6.67 \times  {10}^{ - 11} }}

\tt \longrightarrow{\large \:  M =  \frac{ 1.67\times 3.0276 \times  {10}^{12} }{6.67 \times  {10}^{ - 11} }}

\tt\longrightarrow {\large \:  M =  \frac{ 5.056092\times  {10}^{12 - ( - 11)} }{6.67}}

\tt\longrightarrow {\large \:  M =  \frac{ 5.056092\times  {10 {}^{23} }}{6.67}}

\tt\longrightarrow {\large \:  M =  \frac{ 50.56092 \times  {10}^{22} }{6.67}}

\tt\longrightarrow{\large\: M =  7.5803478261 \times  {10}^{22} }

\tt \longrightarrow\large \:  M =  7.58\times  {10}^{22} kg

Hence,

  • Mass of moon is 7.58 × 10²²

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
5

\mathfrak{\huge{\blue{\underline{Question:-}}}}

On the moon's surface, the acceleration due to gravity is \sf 1.67 \: m/s^{2}. If the radius of the moon is \sf 7.14 \times 10^{6} \: m. Calculate the mass.

\mathfrak{\huge{\blue{\underline{Given:-}}}}

Acceleration due to gravity = \sf 1.67 \: m/s^{2}

Radius of the moon = \sf 7.14 \times 10^{6} \: m

\mathfrak{\huge{\blue{\underline{To \: Find:-}}}}

The mass of the moon.

\mathfrak{\huge{\blue{\underline{Solution:-}}}}

Gravitational constant (G) = \sf 6.67 \times 10^{-11} \:Nm^{2}/kg^{2}

Given that,

Acceleration due to gravity = \sf 1.67 \: m/s^{2}

Radius of the moon = \sf 7.14 \times 10^{6} \: m

∴ Mass of the moon, \sf M=\dfrac{gR^{2}}{G}

\sf M=\dfrac{1.67 \times (1.74 \times 10^{6})^{2}}{6.67 \times 10^{-11}} \: kg

\sf = \underline{\underline{7.58 \times 10^{22} \: kg}}

\mathfrak{\huge{\blue{\underline{Note:-}}}}

G = Gravitational constant

g = Acceleration due to gravity

R = Radius of the moon

M = Mass of the moon

Similar questions