Math, asked by ttamann1228, 7 months ago

On the set of natural numbers the relation R defined by " xRy if x + 2y = 1" . Discuss the relation for reflexivity, symmetricity, transitivity and equivalence relation​

Answers

Answered by shadowsabers03
41

Let \displaystyle\sf{x=y} then,

\displaystyle\sf{\longrightarrow x+2x=1}

\displaystyle\sf{\longrightarrow 3x=1}

\displaystyle\sf{\longrightarrow x=y=\dfrac {1}{3}}\notin\mathbb{N}

Hence R is not reflexive.

Assume \displaystyle\sf {(x,\ y)\in R.}

From definition,

\displaystyle\sf{\longrightarrow x=1-2y}

Assume \displaystyle\sf {(y,\ x)\in R} so that,

\displaystyle\sf{\longrightarrow y+2x=1}

\displaystyle\sf{\longrightarrow y+2(1-2y)=1}

\displaystyle\sf{\longrightarrow y+2-4y=1}

\displaystyle\sf{\longrightarrow y=\dfrac {1}{3}}\notin\mathbb{N}

Hence R is not symmetric.

Assume \displaystyle\sf{\longrightarrow (x,\ y),\ (y,\ z)\in R.}

Then,

\displaystyle\sf{\longrightarrow x+2y=1}

\displaystyle\sf{\longrightarrow y=\dfrac {1-x}{2}\quad\quad\dots(1)}

And,

\displaystyle\sf{\longrightarrow y+2z=1}

From (1),

\displaystyle\sf{\longrightarrow \dfrac {1-x}{2}+2z=1}

\displaystyle\sf{\longrightarrow-x+4z=1}

This implies R is not transitive.

Hence R is not an equivalence relation.


amitkumar44481: Perfect :-)
Similar questions