Math, asked by sandeep2326, 1 year ago

on what principal the amount will become ₹676 in 2 years at rate of 4% p.a intrest compounded annualy​

Answers

Answered by BrainlyConqueror0901
55

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Principal=625\:rupees}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{Given : }   \\  \implies Amount(A) = 676 \: rupees \\  \\  \implies Time (t)= 2 \: years \\  \\  \implies Rate(r) = 4 \\  \\ \underline \bold{To \: Find : } \\  \implies Principal = ?

• According to given question :

 \bold{Using \: formula \: of \: Compound \: Interest : } \\  \implies A = p(1 +  \frac{r}{100} ) ^{t}  \\\\\bold{Putting\:given\:values} \\  \implies 676 =  p \times (1 +  \frac{4}{100} ) ^{2}  \\  \\  \implies 676 = p \times (1 + 0.04)^{2}  \\  \\  \implies 676 = p \times  {(1.04)}^{2}  \\    \\  \implies 676 = p \times 1.0816 \\  \\  \implies p =  \frac{676 }{1.0816}  \\ \\\implies p=\frac{\cancel{676}\times10000}{\cancel{10816}}\\\\\implies p=0.0625\times 1000\\ \\   \bold{\implies p = 625 \: rupees}

Answered by Anonymous
32

Answer____

Principal = 625 rupees

Step-by-step explanation :

 \bold{using \: formula \: of \: compound \: interest : } \\  \implies a = p(1 +  \frac{r}{100} ) ^{t}  \\  \\  \implies 676 =  p \times (1 +  \frac{4}{100} ) ^{2}  \\  \\  \implies 676 = p \times (1 + 0.04)^{2}  \\  \\  \implies 676 = p \times  {(1.04)}^{2}  \\    \\  \implies 676 = p \times 1.0816 \\  \\  \implies p =  \frac{676 }{1.0816}  \\  \\   \bold{\implies p = 625 \: rupees}

Similar questions