Math, asked by samuelkpeter8, 1 month ago

on Z, R={(x,y): x-y is divisible by 5} check if the given relation is reflexive, symmetric or transitive

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

On the set of integers, Z, Relation R is defined as

\red{\rm :\longmapsto\:R =  \{(x,y) :  \: x - y \: is \: divisible \: by \: 5  \}}

1. Reflexive

\rm :\longmapsto\:Let \: a \:  \in \: Z

We know,

\rm :\longmapsto\:0 \: is \: divisible \: by \: 5

\rm :\longmapsto\:(a - a) \: is \: divisible \: by \: 5

\bf\implies \:(a,a) \:  \in \: R

\bf\implies \:R \: is \: Reflexive

2. Symmetric

\rm :\longmapsto\:Let \: a, \: b \:  \in \: Z

such that

\rm :\longmapsto\:(a,b) \:  \in \: R

\rm :\longmapsto\:a - b \: is \: divisible \: by \: 5

\rm :\longmapsto\:b - a \: is \: divisible \: by \: 5

\bf\implies \:(b,a) \:  \in \: R

\bf\implies \:R \: is \: symmetric

3. Transitive

\rm :\longmapsto\:Let \: a, \: b, \: c \:  \in \: Z

such that,

\rm :\longmapsto\:(a,b) \:  \in \: R

\rm :\longmapsto\:a - b \: is \: divisible \: by \: 5

\rm :\longmapsto\:a - b \:  =  \: 5x -  -  - (1)

and

\rm :\longmapsto\:(b,c) \:  \in \: R

\rm :\longmapsto\:b - c \: is \: divisible \: by \: 5

\rm :\longmapsto\:b - c \:  =  \: 5y -  -  - (2)

On adding equation (1) and equation (2), we get

\rm :\longmapsto\:a - c \:  =  \: 5(x + y)

\rm :\longmapsto\:a - c \: is \: divisible \: by \: 5

\bf\implies \:(a,c) \:  \in \: R

\bf\implies \:R \: is \: transitive

Basic Concept :-

Let R be a relation defined on set A then

1. Relation R is Reflexive if (a, a) ∈ R for all a ∈ A.

2. Relation R is symmetric if (a, b) ∈ R then (b, a) ∈ R for all a, b ∈ A.

3. Relation R is transitive if (a, b) ∈ R, (b, c) ∈ R then (a, c) ∈ R for all a, b, c ∈ A

Similar questions