Math, asked by alesitojme, 4 months ago

One angle and its complementary are in the ratio of 2:3. Find the value of the angle please i will givw 11 points!!

Answers

Answered by Sen0rita
35

Given : One angle and it's complementary are in the ratio 2 : 3

To Find : Value of those two angles.

As we know that :

  • Sum of two complementary angles is 90°

Solution :

Put k in the ratio

Angles :

  • 2k
  • 3k

Now,

\tt:\implies \: 2k + 3k = 90\degree

\tt:\implies \: 5k = 90\degree

\tt:\implies \: k =  \cancel\dfrac{90}{5}

\tt:\implies \: k =\boxed{\boxed{\tt\purple{k = 18\degree}}}\bigstar

Now,

  • 2k = 2(18) = 36°
  • 3k = 3(18) = 54°

\sf\therefore{\underline{Hence, \: the \: angles \: are \: 36\degree \: and \: 54\degree \: respectively.}}

Answered by CɛƖɛxtríα
40

{\underline{\underline{\bf{Given:}}}}

  • Two complementary angles are in the ratio 2 : 3.

{\underline{\underline{\bf{Need\:to\:find:}}}}

  • The measure of two angles.

{\underline{\underline{\bf{Concept:}}}}

Complementary angles: A pair of angles whose sum is 90°.

{\underline{\underline{\bf{Solution:}}}}

Let,

\:\:\:\:\bullet{\sf{\:\angle A\:be\:2x}}

\:\:\:\:\bullet{\sf{\:\angle B\:be\:3x}}

In case of complimentary angles,

\longrightarrow{\sf{\angle A + \angle B = 90\degree}}

\:\:\:\:\:\implies{\sf{2x+3x=90}}

\:\:\:\:\:\implies{\sf{5x=90}}

\:\:\:\:\:\implies{\sf{x=\Large{\frac{\cancel{90}}{\cancel{5}}}}}

\:\:\:\:\:\implies{\underline{\underline{\sf{x=18}}}}

We've obtained the value of \sf{x}. So, now we can substitute the value of x in the expressions formed for \sf{\angle A} and \sf{\angle B}.

  • \bf{\angle A}\sf{\rightarrow 2x=2\times 18=\red{\underline{\underline{36\degree}}}}
  • \bf{\angle B}\sf{\rightarrow 3x=3\times 18=\red{\underline{\underline{54\degree}}}}

{\underline{\underline{\bf{Verification:}}}}

\rightarrow{\sf{Sum\:of\:two\:angles=90\degree}}

\rightarrow{\sf{\angle A+\angle B=90\degree}}

\rightarrow{\sf{36\degree+54\degree=90\degree}}

\rightarrow{\sf{90\degree=90\degree}}

\rightarrow{\sf{L.H.S=R.HS}}

\rightarrow{\sf{Hence,\:the\:answer\:is\:correct!}}

{\underline{\underline{\bf{Required\:answer:}}}}

  • The measure of two complementary angles are 36° and 54°.

___________________________________________

Similar questions