one angle of a 7side polygon is 114 and each of other 6 angle are equal. find the angle
Answers
Question : -
One out of 7 angle of a heptagon is 114° and the rest of the 6 angles are equal. Find the angle.
Answer : -
Given that,
1 out of 7 angle = 114°
Rest of the 6 angles are equal.
To find,
Rest of the 6 angles = ?
Assumption,
Let x be the unknown equal angles.
As we know,
Sum of all the angles of a heptagon = 900°
∴ ∠1 + ∠2 + ∠3 + ∠4 + ∠5 + ∠6 + ∠7 = 900°
But, ∠2 + ∠3 + ∠4 + ∠5 + ∠6 + ∠7 = x
∴ ∠1 + x + x + x + x + x + x = 900°
114° + 6x = 900°
6x = 900° - 114°
6x = 786
x =
x =
x = 131
[By substituting the values of x],
x = ∠2 + ∠3 + ∠4 + ∠5 + ∠6 + ∠7
∴ ∠2 + ∠3 + ∠4 + ∠5 + ∠6 + ∠7 = 131°
Verification : -
∠1 + ∠2 + ∠3 + ∠4 + ∠5 + ∠6 + ∠7 = 900°
[By angle sum property of a heptagon],
114° + x + x + x + x + x + x = 900°
114° + 131° + 131° + 131° + 131° + 131° + 131° + = 900°
900° = 900°
Hence, verified.
Therefore, the unknown angles are 131°.
Given ,
One of the angle = 114°
Rest of the 6 angles are equal.
Let the six angels be x [Given they are equal]
As we know,
Sum of all the angles of a heptagon = 900°
∠1 + ∠2 + ∠3 + ∠4 + ∠5 + ∠6 + ∠7 = 900°
∴ ∠1 + x + x + x + x + x + x = 900°
114° + 6x = 900°
6x = 900° - 114°
6x = 786
x = 786/6
x = 131
Therefore rest of the six angles = 131°
Verification =>
Given ,
∠1 + ∠2 + ∠3 + ∠4 + ∠5 + ∠6 + ∠7 = 900°
[substitute the values]
114 + 131+131+131+131+131+131 = 900
900 = 900
Hence the above answer is verified .