Math, asked by AnshumanPani8814, 10 months ago

One angle of a quadrilateral is 1080 and the remaining three angles are equal. Find The three angles?

Answers

Answered by MrChauhan96
309

\small\bf{Given}

One angle of an Quadrilateral is 108°

\small\bf{To\:Find}

Ramaining Three angles = ?

\small\bf{Simplifying:-}

\small\bf{Let\:each\: of \:the\: three\: equal\: angles\: be\: x°}\\{\small\bf{Now,\: sum\:of \:angles\: of\: a}}\\{\small\bf{Quadrilateral \:is\:=\: 360°}}

\small\bf{108°\:+\: x°\:+ \:x° \:+\: x°\: =\: 360°}

\small\bf{ \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:x°\:+ \:x° \:+\: x°\: =\:360°\: - \: 180°}

\small\bf{ \:\:\:\:\:\:\:\:\:\: \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:3\:x°\:=\: 252°}

\small\bf{ \:\:\:\:\:\:\:\:\:\: \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:x°\:=\:{\small\bf\frac{252°}{3}}}

\small\bf{ \:\:\:\:\:\:\:\:\:\: \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:x°\:=\cancel\frac{252°}{3}}

\small\bf{ \:\:\:\:\:\:\:\:\:\: \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:x°\:=\:{84°}}

\small\bf{Hence\:Each\: of \:the\: three\: equal\: angles}\\{\small\bf{ is\: 84°}}

.

\small\bf{\boxed{Thanks}}

Answered by MystícPhoeníx
273

Correct Questions:-

One angle of a quadrilateral is 108°and the remaining three angles are equal. Find The three angles?

Given :-

one angle of quadrilateral=108°.

And , remaining angles are Equal.

Solution:-

Let the remaining angles be =X

We know that sum of angles in quadrilateral is 360°.

Therefore,

108 {}^{o}  + x + x + x = 360 {}^{o}  \\  \\ 3x = 360 {}^{o}  - 108 {}^{0}  \\  \\ 3x = 252 {}^{o}  \\  \\ x = 252 {}^{o} \div 3 \\  \\ x =  84 {}^{o}

Hence the remaining angles are 84°.

hope this answer help you...

Similar questions