Math, asked by savitasingh11380, 19 days ago

One angle of a triangle is 60°. The other two angles are in ratio 5 : 7 .​

Answers

Answered by divyapakhare468
0

To find : two angles of triangle, given in ratio .

Given : ∠A = 60° , ratio of other two angles = 5 : 7

Solution :

  • Let, ∠A , ∠B, ∠C be the three angles of triangle.
  • Let , two angles ∠B, ∠C be 5x and 7x respectively .
  • Therefore according to angle sum property of triangle , we know that sum of all the three angles is 180°.

             i.e. ∠A + ∠B +  ∠C = 180°

  • Substituting the values : 60 + 5x + 7x = 180°

                                                       60 + 12x = 180°

                                                               12x = 120°

                                                                  x = 10°

  • Now to find ∠B :

          ∠B = 5x = 5 ( 10 ) = 50°

  • To find  ∠C :

         ∠C = 7x = 7 ( 10 ) = 70°

Hence , two angles of triangle in ratio are 50° and 70°.

Answered by prachibarapatre
1

The measure of one angle is  60°

The other two angles are in the ratio of 5 : 7

Let the other two angles be 5x and 7x

We know that sum of angles in a triangle is 180°

So, 60 + 5x + 7x = 180

              5x + 7x = 180 - 60

                       12x = 120

                            x = 120/ 12

                             x = 10

So, 5x = 5 × 10

          = 50

    7x = 7 × 10

        = 70

Hence, the two angles will be 50° and 70°

Similar questions