Math, asked by anilkiran7930, 2 days ago

One angle of a triangle is 70 and the other two angles are in the ratio 5:6.Find these angles.​

Answers

Answered by Anonymous
41

 \star \; {\underline{\boxed{\pmb{\green{\frak{ \; Given \; :- }}}}}}

  •  \sf{ \angle 1 = 70^{ \circ } }
  • The other two angles are in the ratio 5:6

 \\ \\

 \star \; {\underline{\boxed{\pmb{\pink{\frak{ \; To \; Find \; :- }}}}}}

  • Find the Other two angles

 \\ \qquad{\rule{200pt}{2pt}}

 \star \; {\underline{\boxed{\pmb{\purple{\frak{ \; SolutioN \; :- }}}}}}

 {\underline{\underline{\sf{ \; We \; Know \; That \; :- }}}}

  • Sum of Angles(Triangle) = 180°

 \\ \\

 {\underline{\underline{\sf{ \; Let \; the \; Ratios \; :- }}}}

  •  \sf{ \angle 2 = 5y^{ \circ } }
  •  \sf{ \angle 3 = 6y^{ \circ } }

 \\ \\

 {\underline{\underline{\sf{ \; Calculating \; the \; Value \; of \; y \; :- }}}}

 \begin{gathered} \; \qquad \dashrightarrow \; \; \sf { \angle 1 + \angle 2 + \angle 3 = 180^{ \circ } } \\ \\ \\ \end{gathered}

 \begin{gathered} \; \qquad \dashrightarrow \; \; \sf { 70^{ \circ } + 5y^{ \circ } + 6y^{ \circ } = 180^{ \circ } } \\ \\ \\ \end{gathered}

 \begin{gathered} \; \qquad \dashrightarrow \; \; \sf { 70^{ \circ } + 11y^{ \circ } = 180^{ \circ } } \\ \\ \\ \end{gathered}

 \begin{gathered} \; \qquad \dashrightarrow \; \; \sf { 11y^{ \circ } = 180^{ \circ } - 70^{ \circ } } \\ \\ \\ \end{gathered}

 \begin{gathered} \; \qquad \dashrightarrow \; \; \sf { 11y = 110 } \\ \\ \\ \end{gathered}

 \begin{gathered} \; \qquad \dashrightarrow \; \; \sf { y = \dfrac{110}{11} } \\ \\ \\ \end{gathered}

 \begin{gathered} \; \qquad \dashrightarrow \; \; \sf { y = \cancel\dfrac{110}{11} } \\ \\ \\ \end{gathered}

 \begin{gathered} \; \qquad \dashrightarrow \; \; {\underline{\boxed{\pmb{\frak { y = 10 }}}}} \; \red{\pmb{\dag}} \\ \\ \\ \end{gathered}

 \\ \\

 {\underline{\underline{\sf{ \; Calculating \; the \; Angles \; :- }}}}

  •  \sf{ \angle 2 } = 5y = 5(10) = 50°
  •  \sf{ \angle 3 } = 6y = 6(10) = 60°

 \\ \\

 \therefore \; The two angles are 50° and 60° .

 \\ \qquad{\rule{200pt}{2pt}}

Answered by EmberMoonbliss
49

\Large\bigstar \; {\underline {\boxed {\pmb{\red{\frak{ \;  Question \; :- \: }}}}}}

  • One angle of a triangle is 70 and the other two angles are in the ratio 5:6.Find these angles.

\Large\bigstar \; {\underline {\boxed {\pmb{\red{\frak{ \;  Answer \; :- \: }}}}}}

  • Angle 2 = 50°
  • Angle 3 = 60°

\Large\bigstar \; {\underline {\boxed {\pmb{\purple{\frak{ \;  Given \; :- \: }}}}}}

  • One angle of triangle = 70°
  • Ratio = 5:6

\Large\bigstar \; {\underline {\boxed {\pmb{\purple{\frak{ \;  Using \; Formula :- \: }}}}}}

  • Angles sum property of triangle = 180°

\Large\bigstar \; {\underline {\boxed {\pmb{\purple{\frak{ \;  Proving \; of \; Formula :- \: }}}}}}

  • Here, To prove the formula we are using we can do it in the following way.
  • To find the angle sum property of any polygon we use the following method.
  • \mapsto\sf\bold{ (2n-4) \times right \:  angle}
  • \mapsto\sf\bold{ (2 \times 3 \: - 4) \times 90}
  • \mapsto\sf\bold{ (6 \: - 4) \times 90}
  • \mapsto\sf\bold{ 2 \: \times 90}
  • \mapsto\sf\red{180°}
  • Here, n = No. of sides

\Large\bigstar \; {\underline {\boxed {\pmb{\purple{\frak{ \;  Explanation \; :- \: }}}}}}

  • Angle 1 = 70°
  • Ratio given = 5:6
  • Let us assume Angle 2 = 5x
  • Therefore, Angle 3 = 6x
  • Now, we can easily find the two other angles of triangle by using the formula given above.

\Large\bigstar \; {\underline {\boxed {\pmb{\purple{\frak{ \; Solution \; :- \: }}}}}}

  • Angle sum property of triangle = 180°
  • \mapstoAngle 1 + Angle 2 + Angle 3 = 180°
  • \mapsto70° + 5x + 6x = 180°
  • \mapsto11x = 180 - 70
  • \mapsto 11x = 110°
  • \mapsto\sf{x \: = \: \cancel\dfrac{110}{11}}
  • \mapsto\sf\red{x \: = \: 10°}

\Large\bigstar \; {\underline {\boxed {\pmb{\pink{\frak{\; Final \; Answer :- \: }}}}}}

  • \mapstoAngle 1 = 70°
  • \mapstoAngle 2 = 5x => 5 x 10
  • \mapsto\sf\red{50°}
  • \mapstoAngle 3 = 6x => 6 × 10
  • \mapsto\sf\red{60°}
Similar questions