Math, asked by rajgopal9237, 3 months ago

One angle of triangle is 54 degree of the other two angles are in the ratio 5ratio 2 find other two
angles of triangle

Answers

Answered by Yuseong
4

Required Answer:

 \boxed { \rm \blue { Given:}}

  • One angle of a ∆ is 54°.

  • Other two angles are in the ratio of 5:2.

______________________________________________

 \boxed { \rm \pink { To \: find :}}

  • Measure of the other two angles

______________________________________________

 \boxed { \rm \orange { Calculation:}}

→ Let the other two angles be 5x° and 2x°.

As we know that,

 \large {\bigstar}  \boxed { \sf { Sum \: of \: interior \: angles \: of \: \triangle = 180°}}

Substituting values:

 \sf { \longrightarrow 54° + 5x° + 2x° = 180°}

 \sf { \longrightarrow 54° + 7x° = 180°}

 \sf { \longrightarrow 7x° = 180° - 54°}

 \sf { \longrightarrow 7x° = 126°}

 \sf { \longrightarrow x° = \dfrac{126°}{7} }

 \sf \red { \longrightarrow x° = 18° }

Therefore, the value of x° is 18°. So, the other two angles of the triangle are:–

  • Second angle = 5x°

→ Second angle = 5 × 18

→ Second angle = 90°

  • Third angle = 2x°

→ Third angle = 2 × 18

→ Third angle = 36°

_______________________________________________

 \boxed { \rm \purple { Quick \: Check!}}

We know:

 \large {\bigstar}  \boxed { \sf { Sum \: of \: interior \: angles \: of \: \triangle = 180°}}

 \sf {\longrightarrow 36° + 90° + 54° = 180°}

 \sf {\longrightarrow 90° + 90° = 180°}

 \sf \red {\longrightarrow 180° = 180°}

 \sf { \: \: \: \: \: \: \: \: \: \: \: Hence, verified!}

_______________________________________________

 \boxed { \rm \green { More \: about \: triangles!}}

  • Perimeter of triangle = Sum of all sides

  • Area of triangle =  \sf { \dfrac{1}{2} \times b \times h}

Some important properties to remember:

Angle sum property of ∆ :

  • Sum of interior angles of ∆ = 180°

Exterior angle property of ∆ :

  • Sum of two interior opposite angles = Exterior angle

_______________________________________________

Answered by Anonymous
3

We have,

  • One of the angles = 54°
  • Ratio of other two = 5:2

Let, common be = k

∴ Angles = 5k, 2k.

We know, sum of interior angles of a △ = 180°

∴ 5k + 2k + 54° = 180°

⇒ 7k = 180° - 54°

⇒ 7k = 126°

⇒ k = 126°/7 = 18°

So, the angles are:-

  • 5k = 5 × 18° = 90°
  • 2k = 2 × 18° = 36°
Similar questions