Math, asked by princegoswami61, 5 months ago

One angles of an isosceles triangle is 110° ,find the remaining two angles​

Answers

Answered by aditya1154
1

Answer:

let \: the \: two \: numbers = x

A/Q

x + x + 110 = 180 \\ 2x = 180 - 110 \\ x =  \frac{70}{2}  = 45

Answered by ItzDαrkHσrsє
7

\sf\star \: \underbrace\purple{Given-} \: \star

  • One of angles of an isosceles triangle is110°.

  • \triangle ABC is a isosceles triangle.

  • AB = AC.

\sf\star \: \underbrace\orange{To \: Find-} \: \star

  • Measure of angles B & C.

\sf\star \: \underbrace\red{Diagram-} \: \star

\setlength{\unitlength}{1.2cm}\begin{picture}(0,0)\linethickness{0.4mm}\qbezier(1, 0)(1,0)(3,3)\qbezier(5,0)(5,0)(3,3)\qbezier(5,0)(5,0)(1,0)\qbezier(3.5,2.3)(3,2)(2.5,2.3)\qbezier(1.5,0.8)(1.8,0.5)(1.8, 0)\qbezier(4,0)(4.2,0.7)(4.5,0.7)\put(1.8, 0.5){\sf x}\put(2.8, 1.8){$\sf 110^{\circ}$}\put(2.9, 3.1){\sf A}\put(0.7,  - 0.3){\sf B}\put(5,  - 0.3){\sf C}\end{picture}

\sf\star \: \underbrace\blue{Solution-} \: \star

\bf{In \: triangle \: ABC,}

\bf{AB = BC ... (Angles \:  opposite \:  to \: equal \:  sides \:  are \: equal)}

\bf{Thus,}

\bf\angle \: c \:  = \bf\angle \: b

\bf{Now,}

\bf\angle \: a + \bf\angle \: b \:  +  \: \bf\angle \: c = 180 \: ...(Angle \: sum \: property \: of \: triangle

\bf\implies{110 + x + x = 180}

\bf\implies{2 x = 180 - 110}

\bf\implies{2x = 70}

\sf\star \: \underbrace{x = 35} \: \star

Hence,

  • Remaining two angles measures 35°.
Similar questions