Math, asked by 7g14nirainjanshrip, 3 months ago

one by alpha³ + one by beeta³​

Answers

Answered by Sagar9040
0

If α,β are roots of equation ax

2

+bx+c=0 then α+β=

a

−b

&αβ=

a

c

i) (1+α)(1+β)

=1+α+β+αβ

=1+(

a

−b

)+

a

c

=1+(

a

c−b

)

ii) α

3

β+αβ

3

αβ(α

2

2

)

a

c

(

a

2

b

2

a

2c

)

a

3

c

(b

2

−2ac)

α+β=−

a

b

(α+β)

2

=b

2

/a

2

α

2

2

+2αβ=b

2

/a

2

α

2

2

=

a

2

b

2

a

2c

iii)  

α

1

+

β

1

αβ

β

+

αβ

α

=

αβ

β+α

=

a

−b

×

c

a

=

c

−b

iv)  

aα+b

1

+

aβ+b

1

                 α+β=

a

−b

=

aα−a(α+β)

1

+

aβ−a(α+β)

1

⇒b=−a(α+β)

=

aα−aα−aβ

1

+

aβ−aα−aβ

1

=−

a

1

(

α

1

+

β

1

)=

a

−1

(

c

−b

)=

ac

b

Similar questions