Math, asked by lamagurung2006, 9 months ago

One diagonal of a rhombus is 6 cm. If the area of the rhombus is 24 sq.cm then what is the length of it's side?​

Answers

Answered by EliteSoul
194

Answer:-

Length of its side = 5 cm

\rule{200}{1}

✦ DIAGRAM:-

\setlength{\unitlength}{1 cm}}\begin{picture}(12,4)\thicklines\put(5,7){$.$}\put(6,6){\line(1,0){3}}\put(7,9){\line(1,0){3}}\put(6,6){\line(1,3){1}}\put(9,6){\line(1,3){1}}\put(6,6){\line(4,3){4}}\put(9,6){\line(-2,3){2}}\put(5.6,5.9){$B$}\put(9.1,5.9){$C$}\put(6.6,8.9){$A$}\put(10.1,8.9){$D$}\put(6.8,7.2){$6\:cm$}\end{picture}

Here,given:-

  • Length of one diagonal = 6 cm
  • Area of rhombus = 24 cm²

To find:-

  • Side of rhombus = ?

Solution:-

As we know, each side of rhombus is equal.

And one diagonal of rhombus divides it into two isosceles triangles.

We also know,

Area of isosceles = (b/4) (4a² - b²)

Here, a = equal sides. b = inequal side.

Now according to question:-

\longrightarrow\sf 2 \bigg[ \big(\dfrac{b}{4} \big ) \sqrt{4a^2 - b^2} \bigg] = 24  \\\\\longrightarrow\sf (\dfrac{6}{4})\sqrt{4a^2 - 6^2} = 24/2 \\\\\longrightarrow\sf (\dfrac{6}{4})\sqrt{4a^2 - 36} = 12 \\\\\qquad\scriptsize\sf{\big [\because  Squaring \: on \: both \: sides \big ]} \\\\\longrightarrow\sf { \bigg [ (\dfrac{6}{4})\sqrt{4a^2 - 36} \bigg] }^2 = (12)^2 \\\\\longrightarrow\sf (\dfrac{36}{16}) (4a^2 - 36) = 144 \\\\\longrightarrow\sf (\dfrac{9}{4})(4a^2 - 36) = 144 \\\\\longrightarrow\sf 9(4a^2 - 36) = 144 \times 4 \\\\ \longrightarrow\sf 36a^2 - 324 = 576 \\\\ \longrightarrow\sf 36a^2 = 576 + 324 \\\\ \longrightarrow\sf 36a^2 = 900 \\\\ \longrightarrow\sf a^2 = 900/36 \\\\\longrightarrow\sf a^2 = 25

\longrightarrow\sf a = \sqrt{25}

\longrightarrow\large\boxed{\boxed{\sf\blue{a = 5 \: cm }}}

Therefore,

Side of rhombus = 5 cm.

Answered by Anonymous
34

Solution :

\bf{\red{\underline{\underline{\bf{Given\::}}}}}

One diagonal of a rhombus is 6 cm. If the area of the rhombus is 24 cm².

\bf{\red{\underline{\underline{\bf{To\:find\::}}}}}

The length of it's side.

\bf{\red{\underline{\underline{\bf{Explanation\::}}}}}

We know that formula of the area of rhombus :

\bf{\boxed{\bf{Area\:of\:rhombus=\frac{1}{2} \times d_{1}\times d_{2}}}}}

So;

\mapsto\sf{24cm^{2} =\dfrac{1}{\cancel{2}} \times \cancel{6}cm\times d_{2}}\\\\\mapsto\sf{24cm^{2} =3cm\times d_{2}}\\\\\mapsto\sf{d_{2}=\cancel{\dfrac{24cm^{2} }{3cm}}} \\\\\mapsto\sf{\pink{d_{2}=8\:cm}}

The other diagonal of rhombus is 8 cm.

Since, We know that diagonals of rhombus bisect each other at 90°.

  • AO = 4 cm
  • DO = 3 cm

\bf\large{\underline{\underline{\bf{Using\:Pythagoras\:theorem\::}}}}}

\sf{(Hypotenuse)^{2} =(base)^{2} +(Perpendicular)^{2} }

In Δ AOD :

\mapsto\sf{AD^{2} =AO^{2} +DO^{2} }\\\\\mapsto\sf{AD^{2} =(4cm)^{2} +(3cm)^{2} }\\\\\mapsto\sf{AD^{2} =16cm^{2} +9cm^{2} }\\\\\mapsto\sf{AD^{2} =25cm^{2} }\\\\\mapsto\sf{AD=\sqrt{25cm^{2} } }\\\\\mapsto\sf{\pink{AD=5\:cm}}

Thus;

The length of the side of rhombus is 5 cm .

Attachments:
Similar questions