Physics, asked by debjyot1829, 5 months ago


One difference between uniform and non uniform motion ​

Attachments:

Answers

Answered by prabhas24480
1

\huge\frak{AnswEr :}

Given Parameters :

⠀⠀⠀⠀⠀⠀⠀⠀⠀

Perimeter = 30 cm

⠀⠀⠀⠀⠀⠀⠀⠀⠀

Length of equal sides = 12cm

⠀⠀⠀⠀⠀⠀⠀⠀⠀

Let us assume that the third side of isosceles triangle be x cm.

⠀⠀⠀⠀⠀⠀⠀⠀⠀

{\underline{\sf \bigstar \:  According  \: to \:  the  \: question :}} \\  \\

\implies\sf \:x + 12 + 12 = 30 \\ \\  \\  \implies\sf \:x + 24 = 30 \\ \\  \\  \implies\sf \:x = 30 - 24 \\ \\  \\  \implies \large{ \boxed{\frak{ \purple{ \:x = 6}}}} \\  \\

⠀__________________________

Now,

⠀⠀⠀⠀⠀⠀⠀⠀⠀

By using Heron's formula :

⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies\sf \:  s = \dfrac{a + b + c}{2} \\  \\  \\ \implies\sf \: s =  \dfrac{Perimeter}{2}  \\  \\  \\  \implies\sf \: s = \frac{30}{2} \\  \\  \\ \implies \large{ \boxed{ \frak{\pink{\: s = 15}}}} \\  \\

⠀__________________________

We know that,

⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies\sf  \: Area  \: of \:  \triangle =  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\  \\

Substituting the values :

⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies\sf  \: Area  \: of \:  \triangle =  \sqrt{15(15 - a)(15 - b)(15 - c)} \\  \\  \\ \implies\sf  \: Area  \: of \:  \triangle =\sqrt{15(15 - 12)(15 - 12)(15 - 6)} \\  \\  \\ \implies\sf  \: Area  \: of \:  \triangle =  \sqrt{15 \times 3 \times 3 \times 9}  \\  \\  \\ \implies\sf  \: Area  \: of \:  \triangle = 3 \times 3 \times  \sqrt{15}  \\  \\  \\ \implies\sf  \: Area  \: of \:  \triangle = 9 \times \sqrt{15} \\  \\  \\ \implies\sf  \: Area  \: of \:  \triangle = 9 \times 3.88 \\  \\  \\ \implies \large{ \boxed{ \frak{\blue{ \: Area  \: of \:  \triangle = 34.92 \: cm {}^{2} }}}} \\  \\

\therefore \: {\underline{\sf{ Area \: of  \: the  \: isosceles \: \triangle  \: is  \:  \bf \: 34.92 cm{}^{2}. }}} \\

Similar questions