Math, asked by raghdevansh9376, 1 year ago

One fill pipe a takes 3 minutes more to fill the cistern than two fill pipes a and b opened together to fill it. second fill pipe b takes 64/3 minutes more to fill cistern than two fill pipes a and b opened together to fill it. when will the cistern be full if both pipes are opened simultaneously.

Answers

Answered by TooFree
10

 \textbf {Hey there, here is the solution.}

.............................................................................................

STEP 1: Define x:

Let the time taken for both the pipe to fill the cistern be x.

1 min = 1/x

.............................................................................................

STEP 2: Find time needed for Pipe A to fill the cistern:

It takes 3 mins more:

Time needed = x + 3

1 min = 1/(x + 3)

.............................................................................................

STEP 3: STEP 2: Find time needed for Pipe B to fill the cistern:

It takes 64/3 mins more.

Time needed = x + 64/3

⇒ 1 min = 1 /( x + 64/3)

.

Simplify 1/(x + 64/3)

 \dfrac{1}{x + \frac{64}{3}}  = 1 \div  ( x + \dfrac{64}{3}) = 1 \div \dfrac{3x + 64}{3}  = 1 \times \dfrac{3}{3x + 64} = \dfrac{3}{3x + 64}

.

⇒ 1 min = 3/(3x + 64)

.............................................................................................

STEP 4: STEP 2: Find time needed for both Pipe A and Pipe B to fill the cistern:

1 min = 1/(x + 3) + 3/( 3x + 64) .

.

 \dfrac{1}{x + 3} +  \dfrac{3}{3x + 64}

 = \dfrac{(3x+ 64) + (3x + 9)}{(x+3)(3x + 64)}

 = \dfrac{3x+ 64 + 3x + 9}{(x+3)(3x + 64)}

 = \dfrac{6x+ 73}{(x+3)(3x + 64)}

.

.............................................................................................

STEP 5: Form the equation and solve for x:

 \dfrac{6x+ 73}{(x+3)(3x + 64)} = \dfrac{1}{x}

 x(6x + 73) = (x + 3)(3x + 64)

 6x^2 + 73x = 3x^2 + 64x + 9x + 192

 6x^2 + 73x = 3x^2 + 73x + 192

 3x^2 -192 = 0

 3x^2 = 192

 x^2 = 64

 x = 8

.............................................................................................

STEP 6: STEP 2: Find time needed for Pipe A and Pipe B to fill the cistern:

1 min = 1/x

Substituting x = 8

1 min = 1/8

.

1/8 of the cistern = 1 min

8/8 of the cistern = 1 x 8 = 8 min

.............................................................................................

Answer: It takes 8 mins for both the pipes to fill up the cistern.

.............................................................................................

 \textbf {Cheers}


Similar questions