One fill pipe a takes 3 minutes more to fill the cistern than two fill pipes a and b opened together to fill it. second fill pipe b takes 64/3 minutes more to fill cistern than two fill pipes a and b opened together to fill it. when will the cistern be full if both pipes are opened simultaneously.
Answers
.............................................................................................
STEP 1: Define x:
Let the time taken for both the pipe to fill the cistern be x.
⇒ 1 min = 1/x
.............................................................................................
STEP 2: Find time needed for Pipe A to fill the cistern:
It takes 3 mins more:
Time needed = x + 3
⇒ 1 min = 1/(x + 3)
.............................................................................................
STEP 3: STEP 2: Find time needed for Pipe B to fill the cistern:
It takes 64/3 mins more.
Time needed = x + 64/3
⇒ 1 min = 1 /( x + 64/3)
.
Simplify 1/(x + 64/3)
.
⇒ 1 min = 3/(3x + 64)
.............................................................................................
STEP 4: STEP 2: Find time needed for both Pipe A and Pipe B to fill the cistern:
1 min = 1/(x + 3) + 3/( 3x + 64) .
.
.
.............................................................................................
STEP 5: Form the equation and solve for x:
.............................................................................................
STEP 6: STEP 2: Find time needed for Pipe A and Pipe B to fill the cistern:
1 min = 1/x
Substituting x = 8
1 min = 1/8
.
1/8 of the cistern = 1 min
8/8 of the cistern = 1 x 8 = 8 min
.............................................................................................
Answer: It takes 8 mins for both the pipes to fill up the cistern.
.............................................................................................
⭐⭐