Physics, asked by preethiraj1121, 10 months ago

One mole of an ideal gas at an initial temperature of
T K does 6R joules of work adiabatically. If the ratio
of specific heats of this gas at constant pressure and a constant volume is 5/3, the final temperature of gas will be​

Answers

Answered by amansharma264
67

 \bf \to \:  \green{{ \underline{given \div }}}

 \sf \to \: one \: moles \: of \: an \: ideal \: gas  \\  \\  \sf \to \: initial \: temperature \: \:  = t \: k \\  \\  \sf \to \: work \: done \:  = 6r \: joule \: adiabatically \\  \\  \sf \to \: specific \: heat \: of \: the \: gas \: at \: constant \: pressure \: and \: volume \:   =  \dfrac{5}{3}

 \bf \to \: \pink{ { \underline{to \: find \: final \: temperature \: of \: gas \: }}}

 \bf \to \:  \orange{{ \underline{step \:  - by  - \: step \:  - explanation}}}

 \sf \to \: { \underline{in \: adiabatic \: process \: }} \\  \\  \sf \to \: the \: system \: is \: insulated \: in \: surrounding \\  \sf \to \: and \: heat \: absorb \: or \: released \: is \:  = 0 \\  \\  \sf \to \: pv {}^{( \lambda)}  = constant \\  \\  \sf \to \: { \underline{work \: done \: by \: gas \: in \: adiabatic \: process}} \\  \\  \sf \to \: w \:  =  \dfrac{ \mu \: r \: ( t_{i} \:  -  \:  t_{f} \: )  }{( \gamma \:  - 1)} \\  \\  \sf \to \: 6r \:  =  \dfrac{1 \times r \: (t \:  -  t_{f} \: ) }{ (\dfrac{5}{3}  - 1)}  \\  \\  \sf \to \: 6 =  \frac{(t \:  -  \:  t_{f}) }{ \frac{2}{3} }  \\  \\  \sf \to \: 4  =  t \:  -  \:  t_{f} \\  \\  \sf \to \:  \green{{ \underline{t \:  =(  t_{f} \:  - 4 )k}}}


ButterFliee: Awesome :)
TheMoonlìghtPhoenix: Great!
Answered by Anonymous
617

 \sf  \large \red{\underline{ Question:-}}\\\\

  • One mole of an ideal gas at an initial temperature of T K does 6R joules of work adiabatically. If the ratio of specific heats of this gas at constant pressure and a constant volume is 5/3, the final temperature of gas will be

 \\\\\sf  \large \red{\underline{Given:-}}\\\\

  •  \sf \:  t_{1} = t

  •  \sf w \:  = 6r

  •  \sf \:  \gamma  =  \frac{5}{3}  \\

 \\\\\sf  \large \red{\underline{To   \: Find:-}}\\\\

  • \sf \: the  \: final \:  temperature  \: of  \: gas \:will \:  be

 \\\\\sf  \large  \red{\underline{Solution :-  }}\\\\

 \sf \underline {we \: have \: adiabatic \: formula : } \\

 \boxed{ \sf \red {\: w = \frac{r( t_{2} -  t_{1})}{ 1 - \gamma  }  }} \\ \\

 \sf \underline { \orange {putting \: all \: values}}

 \sf \to \: 6r \: = \frac{r( t_{2} -  t)}{ 1  -  \frac{5}{3} }  \\ \\ \sf \to \: 6r =  \frac{r(t_{2} -  t)}{ \frac{3 - 5}{3} }  \\  \\  \sf \to 6r =  \frac{r( t_{2} -t) }{  \frac{ - 2}{3} }  \\  \\   \sf \to  6 \cancel{r} =  \frac{ \cancel{r}( t_{2}  -  t)}{ \frac{ - 2}{3} }  \\  \\  \sf \to \: t_{2}  - t = 6 \times \frac{ (- 2)}{3}  \\  \\  \sf \to \: t_{2}  - t  =  \frac{ - 12}{3}  \\  \\  \sf \to \: t_{2}  - t \:  =  \frac{  - \cancel{ 12}}{ \cancel{3}}  \\  \\  \sf \to \: t_{2}  - t =  - 4 \\  \\  \sf \to \red{ t_{2} = (t - 4)k }

  \\   \sf  \text{    \underline{\sf \red{the final temperature of gas will be}}} (t - 4)k \:  \huge \dag


ButterFliee: Nice :)
TheMoonlìghtPhoenix: Great!
Similar questions