Math, asked by sangeetadas590, 11 months ago

one number is 7 more than another and its square is 77 more than the square of the smaller number what are the number? ​

Answers

Answered by EliteSoul
9

Answer:

\huge{\boxed{\mathfrak{Answer=9\:and\:2}}}

_________________________

Let's consider the bigger number as 'X' and the smaller number as 'Y' .

According to question now:-

\tt X = Y + 7 \: \: \: \:(eq.1) \\\\ \tt {X}^{2} = {Y}^{2} + 77 \: \: \: \:(eq.2)

Now putting the value of (eq.1) into the (eq.2) we get,

\tt {(Y+7)} ^{2} = {Y}^{2} + 77 \\ \\ \leadsto\tt {Y}^{2} + 2 \times Y \times 7 +{7}^{2} = {Y}^{2} + 77 \\ \\ \leadsto\tt {Y}^{2} + 14Y + 49 = {Y}^{2} + 77 \\ \\ \leadsto\tt {Y}^{2} + 14Y - {Y}^{2} = 77 - 49 \\ \\ \leadsto\tt 14Y = 28 \\ \\ \leadsto\tt Y =\frac{28}{14} \\ \\ \leadsto\tt Y = 2

\therefore\bold {\underline{Smaller\:number(Y)=2}}

__________________________

Putting the value of Y into the (eq.1) we get,

\tt X = 2 + 7 \\ \\ \leadsto\tt X = 9

\therefore\bold {\underline{Bigger\:number(X)=9}}

Verification:-

Putting the value of X and Y in both the equations,we get

\tt 9 = 2 + 7 \\ \\ \leadsto\tt 9 = 9 \: \:[Verified]

___________________________

\tt {9}^{2} = {2}^{2} + 77 \\ \\ \leadsto\tt 81 = 4 + 77 \\ \\ \leadsto\tt 81 = 81 \: \: \:[Verified]

\therefore\bold{\underline{ Numbers\:are\:9 \: \:and \: \: 2}}

Answered by TRISHNADEVI
3

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \text{Suppose,} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \text{The  \: bigger \:   number  = x} \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \text{The \:  smaller \:  number = y}</p><p>

 \underline{ \bold{ \:  \: Given \: :  \mapsto}} \\  \\  \text{ \:  \:  \: One  \: number \:  is  \: 7  \: more \:  than  \: another.} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bold{x - y = 7 \:  \:  \:  -  -  -  -  -  -  -  &gt; (1)} \\  \\  \text{ \:  \:  \:  \:  The \:  \:  square \:  \:  of  \:  \: the \:  \:  bigger \:  \:  number \:} \\   \text{is \:  \:  77  \:  \: more \:  \:  than  \:  \: the \:  \:  square  \:  \: of \:  \:  the  \: } \\  \text{ smaller \:  \:  number.} \\  \\  \bold{x {}^{2}  - y {}^{2} = 77 \:  \:  \:  -  -  -  -  -  -   -  -  &gt;( 2) }</p><p></p><p>

 \bold{(2)  \Rightarrow \: x {}^{2}  - y {}^{2}   = 77} \\  \\  \bold{\Longrightarrow \: (x + y)(x - y) = 77} \\  \\  \bold{\Longrightarrow \: (x + y) \times 7 = 77 \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \: [From  \: (1)]} \\  \\  \bold{\Longrightarrow \: x + y =  \frac{77}{7} } \\  \\ \:  \:  \:  \:  \:   \bold{ \therefore \:  \: x + y = 11 \:  \:  \:  -  -  -  -  -  -  -  &gt; (3)} \\  \\  \\

 \underline{ \text{ \: Now, \: }} \\  \\  \:  \:  \:  \:  \:  \: \bold{ (1) +(3)} \\  \\  \bold{ \Longrightarrow \: (x - y) +( x + y) = 7 + 11} \\  \\  \bold{\Longrightarrow \: x + x = 18} \\  \\  \bold{\Longrightarrow \: 2x = 18} \\  \\  \bold{\Longrightarrow \: x =  \frac{18}{2} } \\  \\   \:  \:  \:  \:  \: \bold{ \therefore \:  \:  \underline {\: x = 9 \:} } \\  \\

 \bold{ \therefore \:  \: (1)  \Rightarrow \: x - y = 7} \\  \\  \bold{ \Longrightarrow \: 9 - y = 7} \\  \\  \bold{\Longrightarrow \:  - y = 7 - 9} \\  \\  \bold{ \Longrightarrow \: - y =  - 2} \\  \\  \bold{ \:  \:  \:  \:  \:  \therefore \:  \: \underline{ \:  y = 2 \: }}

 \mathsf{Hence,} \\  \\  \mathsf{The \:  numbers  \:  \: are :-  \:  \:  \underline {\:  \: 9  \: \:  and \:  \:  2\:  \: }}

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: VERIFICATION \:  \: } \mid}}}}}

\underline{\text{ \: Putting   \:  \: the   \:  \:  value   \:  \:  of   \:  \:  \red{  x }  \:  \:  and \: }}\\ \underline{\text{ \:  \red{ y   }\:  \: in  \:  \:   both  \:  \:  the  \:  \:  equations  \: :- }}

From eq. (1) , we get,

\bold{L.H.S. = x - y }\\ \\ \bold{= 9 - 2 } \\ \\ \bold{= 7 = R.H.S.}

From eq. (2), we get,

\bold{L.H.S. = x {}^{2}  - y {}^{2} } \\ \\ \bold{ = 9{}^{2}  - 2{}^{2}} \\ \\ \bold{ = 81 - 4} \\ \\ \bold{= 77 = R.H.S.}

Hence, Verified.

Similar questions