Math, asked by shahilranjan, 5 months ago

one of the angles of a triangle is 110 and the other two angles are equal .what is the measures of each of these equal angles​

Answers

Answered by MoodyCloud
73
  • Measure of each of equal angles is 35°.

Step-by-step explanation:

Given:-

  • One angle of triangle is 110°.
  • Other two angles are equal.

To find:-

  • Measure of each equal angles.

Solution:-

Let, Other two angles be x and x.

We know sum of all angles of triangle is 180°.

So,

 \longrightarrow x + x + 110° = 180°

 \longrightarrow 2x + 110° = 180°

 \longrightarrow 2x = 180° - 110°

 \longrightarrow 2x = 70°

 \longrightarrow x = 70°/2

 \longrightarrow x = 35°

Verification:-

 \longrightarrow x + x + 110° = 180°

  • Put x = 35°

 \longrightarrow 35° + 35° + 110° = 180°

 \longrightarrow 180° = 180°

 \boxed{\sf Hence \: Verified.}

We take x be equal angles.

Therefore,

Measure of each of equal angles is 35°.


BrainIyMSDhoni: Awesome :)
Answered by SarcasticL0ve
47

Given:

  • One of the angles of a triangle is 110°.

⠀⠀⠀

To find:

  • Measure of other two equal angles?

⠀⠀⠀

Solution:

⠀⠀⠀

\setlength{\unitlength}{1.1 cm}\begin{picture}(0,0)\thicklines\qbezier(1, 0)(1,0)( - 0.3,3)\qbezier(5,0)(5,0)( - 0.3,3)\qbezier(5,0)(1,0)(1,0)\put( - 0.5,3.2){$\bf A$}\put(0.5,-0.3){$\bf C$}\put(5.2,-0.3){$\bf B$}\qbezier(4.18,0.5)(3.9,0.25)(4,0)\qbezier(0.8,0.5)(1.4,0.3)(1.5,0)\qbezier( - 0.05,2.4)(0.1,2.2)(0.5,2.5)\put(0.4,2.1){$\sf x$}\put(1.4,0.4){$\sf 110^\circ$}\put(3.6,0.25){$\sf x$}\end{picture}

☯ Let other two equal angles be x and x.

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

  • Sum of all angles of a triangle is 180°.

⠀⠀⠀

\bigstar\:{\underline{\sf{Now,\:In\; \triangle\: ABC\::}}}\\ \\

:\implies\sf \angle\:A + \angle\:B + \angle\:C = 180^\circ\\ \\

\sf Here \begin{cases} & \sf{\angle\:A = \bf{x}}  \\ & \sf{\angle\:B = \bf{x}} \\ & \sf{\angle\:C = \bf{110^\circ}}\end{cases}\\ \\

\dag\;{\underline{\frak{Putting\:values,}}}\\ \\

:\implies\sf x + x + 110^\circ = 180^\circ\\ \\

:\implies\sf 2x + 110^\circ = 180^\circ\\ \\

:\implies\sf 2x = 180^\circ - 110^\circ\\ \\

:\implies\sf 2x = 70^\circ\\ \\

:\implies\sf x = \cancel{ \dfrac{70^\circ}{2}}\\ \\

:\implies{\underline{\boxed{\sf{\purple{x = 35^\circ}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Measure\:of\:other\:two\:equal\: angles\:of\:a\:triangle\:is\: \bf{35^\circ}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\boxed{\underline{\underline{\pink{\bigstar \: \bf\:More\:to\:know\:\bigstar}}}}\\ \\

\star\;{\underline{\sf{Types\:of\:triangle,}}}\\\\

  • Equilateral triangle: An equilateral triangle has three equal sides and angles. All angles of an equilateral triangle are of measure 60°.

  • Isosceles triangle: An isosceles triangle have two equal sides and two equal angles or with two acute angles and one obtuse angle.

  • Scalene triangle: A scalene triangle has three different angles and none of its sides are equal in length.

  • Right angled triangle: A right-angled triangle has one 90° angle.

  • Obtuse triangle: An obtuse triangle has three different sides and angles, with one angle greater than 90°.

BrainIyMSDhoni: Great :)
Similar questions