Math, asked by yusra1182, 1 month ago

one of the exterior angles of a traingle is 125° and the interior opposite angles are in the ratio 2:3. find the angles of the traingle​

Answers

Answered by arvind1575
2

hi here is your answer!

Answer:

The interior opposite angles are 50⁰ and 75⁰ respectively

Step-by-step explanation:

Let the interior opposite angles be 2x and 3x

we know that, exterior angles = sum of opposite interior angles

2x+3x=125

5x=125

x=125/5

x=25

substituting x value in 2x and 3x

2x= 2(25) =50

3x=3(25) = 75

you can even check by adding 50+75=125

i hope it helps.

Answered by Anonymous
29

Given: one of the exterior angles of a traingle is 125° and the interior opposite angles are in the ratio 2:3.

To Find: the angles of the traingle respectively

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

❒ Let the opposite interior angles in the triangle be 2x and 3x respectively

{ \underline{ \bf{ \bigstar \: According \: to \: the \: question : }}}

  • The measure of an exterior angle is 125°

Now, Basing this let's find the measure of the interior ACB

We know that,

  • The sum of the measurements of a interior angle and it's adjacent exterior angle equals 180°

 \leadsto \tt 125 \degree \:  +  \angle \: c = 180\degree \\  \\ \leadsto \tt  \angle \: c = 180 - 125 \degree \:  \:  \:  \\  \\ \leadsto \tt  \angle \: c = { \blue{ \boxed{55\degree}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Now, let's find the measurements of the other interior angles.

 \\

{ \underline{ \frak{As \:  we  \: know \:  that \dag}}}

  • The sum of the measurements of all the interior angles in a triangle equal 180°

{ \underline{ \bf{ \bigstar \:Framing \: an \: equation \: we \: get : }}}

{ : \implies} \sf \: 55 + 2x + 3x = 180 \\  \\  \\ { : \implies} \sf \: 55 + 5x = 180 \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \sf \: 5x = 180 - 55 \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \sf \: 5x = 125 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \sf \:  \: x =   \cancel\frac{125}{5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \\  \\  \\ { : \implies} \sf \: { \underline{ \pink{ \boxed{ \frak{x = 25}}}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\

Now,

  • Let's substitute the value of x and find the measurements of the angles.

  {\purple{\mapsto}} \tt \: angle \: 2x = 2(25) = 50 \degree \\  \\    {\purple{\mapsto}} \tt \: angle \: 3x = 3(25) = 75 \degree

 \\

{ \underline{ \bf{ \bigstar \: Verification : }}}

  • Now let's add all the angles and check weather they equal 180° or not.

\leadsto \tt 55 + 75 + 50  = 180 \\  \\  \\ \leadsto \tt 130 + 50 = 180 \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ \leadsto \tt 180 = 180 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Hence verified..!!

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

Attachments:
Similar questions