Math, asked by vivek2819, 1 year ago

One of the exterior angles of a triangle is 30 degree and the interior opposite angles are in the ratio 2 ratio 3.Find the angles of the triangle

Answers

Answered by sneha1135
0
The angles will be 52°,78° and 50 °
Answered by Anonymous
28

Let the opposite interior angles of the triangle be 2x and 3x

\dag{\mathfrak{\underline{As\:we\:know\:that:}}}\\    \\ \\ \\ \\

  • Sum of to opposite interior angles equal to an exterior angle in a triangle

\\   { : \implies} \sf \: 30 \degree = 2x + 3x \\  \\  \\  { : \implies} \sf \: 30 \degree = 5x \\  \\  \\ { : \implies} \sf \:x =   \cancel\frac{30}{5}  \\  \\  \\ { : \implies}  { \underline{ \boxed{ \sf \: x \degree =6 \degree \:  }}}\\ \\

 \\ \\ \sf \: the \: angle \: 2x = 6(2) =  \pink{12\degree} \\  \\  \sf \: the \: angle \: 3x = 6(3) = \pink{18\degree}

__________________________________________

\dag{\mathfrak{\underline{As\:we\:know\:that:}}}\\    \\ \\ \\

  • Sum of interior angles in a triangle is 180°

   \sf \longrightarrow\angle \: 12 \degree + \angle \: 18 +  \angle \: c \degree = 180\degree  \\  \\  \\  \sf \longrightarrow\angle \: 30 \degree+  \angle \: c = 180\degree  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: \\  \\  \\  \sf \longrightarrow\sf\angle \: c\degree  = 180 - 30\degree  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ \sf \longrightarrow\sf  {\underline{\boxed{ \pink{ \sf\angle  c\degree = 150\degree }}}}\bigstar \:  \:  \:  \:   \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:

hope this helps:)

Similar questions