English, asked by Anonymous, 2 months ago

One of the exterior angles of a triangle is 70° and the interior opposite angles are in the ratio
3:4. Find the angles of the triangle.​

Answers

Answered by raiyanfaisalyousufud
3

Answer:

Explanation:

let the opposite angles be 3x and 4x  

then

exterior angle = sum of opposite interior angles

implies  

70 = 3x + 4x

⇒7x = 70

⇒x=70÷7

⇒x=10

so opposite angles are

3x = 3×10 = 30

4x = 4×10 = 40

Answered by Anonymous
62

Given:

  • One of the exterior angles of a triangle is 70° and the interior opposite angles are in the ratio 3:4.

To find:

  • The angles of triangle.

Solution:

⠀⠀Exterior angle of the triangle = 70°

❍ Let the interior angles of the triangle be 3x and 4x

We know that,

Exterior angle property of a triangle :

  • If a side of a triangle is produced, then the exterior angleso formed is equal to sum of two interior opposite angles.

\dashrightarrow\sf \: \: \: \: 3x + 4x +  = 70^\circ \\\ \\\dashrightarrow\sf \: \: \: \: \: \: \: \: \: \: 7x = 70^\circ  \\\\\dashrightarrow \: \: \: \: \: \: \: \sf x = \sf\cancel\dfrac{70}{7} \\\\\ \:  \:  \:  \:  \:  \:  \:    \dashrightarrow \: \: \: \pmb x = \underline{\boxed{\pmb{\pink{10 {}^{ \circ} }}}} \\ \\

Hence,

  • 3x = 6 × 10° = 30°
  • 4x = 4 × 10° = 40°

⠀⠀⠀

\:  \:\implies\sf \Big(First\;angle\Big) +\Big(Second\;angle\Big)+\Big(Third\;angle\Big) = Sum \: of \: the \: angles \: of \: the \: triangle\\\\\\\ \:  \:  \:  \:  \:  \:  \implies\sf 30^\circ + 40^\circ + third \: angle = 180^\circ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\\\\\\implies\sf third \: angle = 180^\circ  - 70  {}^{ \circ}  = 110 {}^{ \circ} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \\  \\

_____________________________________________________________________

❍ VERIFICATION:

\: \: \: \: \: \: \: \: \: \:\implies\sf \Big(First\;angle\Big) +\Big(Second\;angle\Big)+\Big(Third\;angle\Big) = Sum \: of \: the \: angles \: of \: the \: triangle\\\\\\\implies\sf 30^\circ + 40^\circ + 110^\circ = 180^\circ \: \: \: \: \ \: \: \: \: \: \: \: \: \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\\\\\\implies\sf 180^\circ = 180^\circ  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \\  \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \ {\underline{\boxed{\pmb{{L.H.S = R.H.S}}}}} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀HENCE VERIFIED!!

Similar questions