Math, asked by rsri59308, 1 year ago

one of the parallel side of a Trapezium is thrice the other the area of the trapezium is 440 CM square and its height is 22 cm find the length of its two parallel sides​

Answers

Answered by karanjotgaidu
57

Answer:

Let the parallel sides be x and 3x

Area of trapezium = 1/2 h(b1 + b2)

440 = 1/2 (22) (x + 3x)

440 = 11 (4x)

440 = 44x

x = 440/44

x = 10

First parallel side = x = 10 cm

Second parallel side = 3x = 30 cm

Pls follow.....

Answered by Anonymous
48

\huge{\underline{\underline{\sf{\red{SOLUTION:-}}}}}

\sf{\underline{\green{Answer-}}}

  • \sf \: Length \: of \: first \: side= \: 10cm

  • \sf \: Length \: of \: second\: side= \: 30cm

\sf{\underline{\green{Given-}}}

  • One of the parallel side of a Trapezium is thrice the other the area of the trapezium is 440 CM² and its height is 22 cm.

\sf{\underline{\green{We\:Have\:To\:Find-}}}

  • The length of its two parallel sides.

\sf{\underline{\green{Explanation-}}}

\sf \: Let \: the \: first \: side \: be=x

\sf \: Let \: the \: Second \: side \: be= \: 3x

\sf \: (Given) -\: Height= \: 22cm

\sf\underline{\red{Formula\:used\: here-}}

\bigstar \:  \boxed{\sf {Area \: of \: trapezium \: = \:  \frac{1}{2} (a+b) \times h}}

➨⠀\sf440 =  \frac{1}{2} (x + 3x) \times 22

➨⠀\sf440 =  (x + 3x) \times 11

➨⠀\sf \: 440 = 4x \times 11

➨⠀\sf \: x =  {\dfrac{\cancel{440}}{\cancel{44}}\:}

➨⠀{\sf { x= 10}}

\sf\underline\red {\: Now \: putting \: the \: values-}

➨⠀⠀\boxed{\sf {  First\: side= 10 \times 1 = 10cm}}

➨⠀⠀\boxed{\sf {Second\: side= 10 \times 3 = 30cm}}

Similar questions