one of the parallel sides of a Trapezium is double the other and its height is 24 cm if the area of the trapezium is 36 find the length of the parallel side
Answers
Here we will learn how to use the formula to find the area of trapezium.
Area of trapezium ABCD = Area of ∆ ABD + Area of ∆ CBD
= 1/2 × a × h + 1/2 × b × h
= 1/2 × h × (a + b)
= 1/2 (sum of parallel sides) × (perpendicular distance between them)
Area of trapezium
9Save
Worked-out examples on area of trapezium
1. The length of the parallel sides of a trapezium are in the rat: 3 : 2 and the distance between them is 10 cm. If the area of trapezium is 325 cm², find the length of the parallel sides.
Solution:
Let the common ration be x,
Then the two parallel sides are 3x, 2x
Distance between them = 10 cm
Area of trapezium = 325 cm²
Area of trapezium = 1/2 (p₁ + p₂) h
325 = 1/2 (3x + 2x) 10
⇒ 325 = 5x × 5
⇒ 325 = 25x
⇒ x = 325/25
Therefore, 3x = 3 × 13 = 39 and 2x = 2 × 13 = 26
Therefore, the length of parallel sides area are 26 cm and 39 cm.
2. ABCD is a trapezium in which AB ∥ CD, AD ⊥ DC, AB = 20 cm, BC = 13 cm and DC = 25 cm. Find the area of the trapezium.
find the area of trapezium
9Save
Solution:
From B draw BP perpendicular DC
Therefore, AB = DP = 20 cm
So, PC = DC - DP
= (25 - 20) cm
= 5 cm
Now, area of trapezium ABCD = Area of rectangle ABPD + Area of △ BPC
△BPC is right angled at ∠BPC
Therefore, using Pythagoras theorem,
BC² = BP² + PC²
13² = BP² + 5²
⇒ 169 = BP² + 25
⇒ 169 - 25 = BP²
⇒ 144 = BP²
⇒ BP = 12
Now, area of trapezium ABCD = Area of rectangle ABPD + Area of ∆BPC
= AB × BP + 1/2 × PC × BP
= 20 × 12 + 1/2 × 5 × 12
= 240 + 30
= 270 cm²
3. Find the area of a trapezium whose parallel sides are AB = 12 cm, CD = 36 cm and the non-parallel sides are BC = 15 cm and AG = 15 cm.
examples on area of trapezium
Solution:
In trapezium ABCD, draw CE ∥ DA.
Now CE = 15 cm
Since, DC = 12 cm so, AE = 12 cm
Also, EB = AB - AE = 36 - 12 = 24 cm
Now, in ∆ EBC
S = (15 + 15 + 24)/2
= 54/2
= 27
= √(27 × 12 × 12 × 3)
= √(3 × 3 × 3 × 3 × 2 × 2 × 2 × 2 × 3 × 3)
= 3 × 3 × 3 × 2 × 2
= 108 cm²
Draw CP ⊥ EB.
Area of ∆EBC = 1/2 × EB × CP
108 = 1/2 × 24 × CP
108/12 = CP
⇒ CP = 9 cm Therefore, h = 9 cm
Now, area of triangle = √(s(s - a) (s - b) (s - c))
= √(27 (27 - 15) (27 - 15 ) (27 - 24))
Now, area of trapezium = 1/2(p₁ + p₂) × h
= 1/2 × 48 × 9
= 216 cm²
4. The area of a trapezium is 165 cm² and its height is 10 cm. If one of the parallel sides is double of the other, find the two parallel sides.
Solution:
Let one side of trapezium is x, then other side parallel to it = 2x
Area of trapezium = 165 cm²
Height of trapezium = 10 cm
Now, area of trapezium = 1/2 (p₁ + p₂) × h
⇒ 165 = 1/2(x₁ + 2x) × 10
⇒ 165 = 3x × 5
⇒ 165 = 15x
⇒ x = 165/15
⇒ x = 11
Therefore, 2x = 2 × 11 = 22
Therefore, the two parallel sides are of length 11 cm and 22 cm.
These are the above examples explained step by step to calculate the area of trapezium.
● Mensuration
Area and Perimeter
Perimeter and Area of Rectangle
Perimeter and Area of Square
Area of the Path
Area and Perimeter of the Triangle
Area and Perimeter of the Parallelogram
Area and Perimeter of Rhombus
Area of Trapezium
Circumference and Area of Circle
Units of Area Conversion
Practice Test on Area and Perimeter of Rectangle
Practice Test on Area and Perimeter of Square
● Mensuration - Worksheets
Worksheet on Area and Perimeter of Rectangles
Worksheet on Area and Perimeter of Squares
Worksheet on Area of the Path
Worksheet on Circumference and Area of Circle
Worksheet on Area and Perimeter of Triangle
, my friend make me as brainliest and please thanks my 15 answers. .....☺☺☺☺☺
Given :
One of the parallel sides of trapezium is double the other
Height of the trapezium = 24 cm
Area of trapezium = 360 cm²
To Find :
The length of parallel sides of trapezium
Solution :
Let length of one of the parallel sides be "x" then the length of the other side becomes "2x".
Area of trapezium is given by ,
here ,
a and b are lengths of parallel sides
h is height of trapezium
Subatituting the values we have in the formula ,
Now ,
Length of one of the parallel side (x) = 10 cm
Then ,
The length of the other parallel side (2x) = 2(10) = 20 cm
Hence ,
Lengths of the parallel sides of given trapezium are 10 cm and 20 cm